

SuperTruck Program: Engine Project Review

Recovery Act – Class 8 Truck Freight Efficiency Improvement Project

PI: Sandeep Singh (Engine) Detroit Diesel Corporation June 20, 2014

Project ID: ACE058

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start: April 2010
- Project end: March 2015
- Percent complete: 80%

Budget

- Engine Budget \$31,633,001
 - DOE Share* \$12,883,779
 - Detroit Share* \$12,883,779

* Program spending through March 2014 for engine R&D; vehicle R&D expenses reported separately.

Barriers & Challenges

- WHR performance trade-offs and cooling challenges on-board vehicle.
- Complex controls architecture and integration of powertrain and novel technologies.
- Reliability of prototype systems in development and demonstration phase.
- Low temperature transient emissions controls.
- Realistic 55% engine BTE roadmap.

Partners

- Department of Energy
- Oak Ridge National Laboratory
- Massachusetts Institute of Technology
- Atkinson LLC
- Daimler Trucks North America
- Daimler Advanced Engineering

Daimler Truck SuperTruck Program

Develop and demonstrate a 50% increase in vehicle freight efficiency:

- 30% increase via vehicle improvements.
- 20% increase via engine improvements; specifically 50% brake thermal efficiency.
 - Identify pathway to 55% brake thermal efficiency via modeling and analysis.

ARRAVT080 - DTNA SuperTruck vehicle program; PI - Derek Rotz

Engine Downspeed & Downsize

SuperTruck Demonstration Status

- Prototype A-sample SuperTruck vehicle built and being utilized for testing and development.
- Successful integration of complex technologies EHR, hybrid & HV systems, controllers and network architecture, new cooling layout, new hydraulic systems, powertrain.
- Final demonstration truck builds in progress.

Enablers for Project Year 4 (PY4) BTE Improvement \rightarrow 2.1%

- Further increase in compression ratio (CR), piston bowl and matching injector profile optimization.
- Third iteration of turbo-charger.
- Optimized liner cooling.
- EGR waste heat recovery.
- WHR component and calibration optimization.

SuperTruck Core Engine BTE Status

47.9% BTE SuperTruck Core Engine Technology Package

- Downsizing to 10.7L from 14.8L
- Reduced EGR & optimized turbocharger and air system match
- Higher compression ratio, piston bowl optimization, matching injector nozzles
- Variable speed water pump
- Low viscosity oil and higher oil film temperatures
- Piston kit improvements

Step Bowl

• High efficiency, lower restriction aftertreatment

Piston and Compression Ratio

Step Bowl

Omega Bowl

Fuel Injection System

- Best injector and piston combination selected after extensive testing.
- Combination of single cylinder and multicylinder platforms used for this investigation.

- Optimized combustion package for best fuel economy.
- Peak firing pressure increased by 15%
- Plans to test even higher CR. (55%scoping)
- Efficient part load operation, but challenges with high load durability, head & block design and material, NVH, emissions.

of holes

Air Handling

- Turbo sized for reduced EGR and air mass contributing to lower pumping losses.
- Tuned for a downsped engine.
- Engine air system design leverages a lower power rating required for the aerodynamically and parasitically efficient SuperTruck.
- Approach requires a very high efficiency SCR and low backpressure aftertreatment (ATS).

Parasitic Reductions

- Variable speed water pump, lower viscosity oil, bundled cylinder kit improvements.
- Altered cooling to midstroke area of the liner (Detroit/MIT).

linder Hea

Qliner,i

Further Investigations (55% Scoping)...

- Next evolution of liner cooling optimization (Detroit/MIT).
- New lubricant formulation (MIT+oil supplier).
- Oil circuit and pump optimizations (MIT).

Approach and Relevance

SuperTruck Engine Control Approach

- Model based controls (MBC) optimize fuel economy and constraint emissions in real time.
- Extensive transient & steady state mapping used to calibrate engine models.
- Both offline & real time optimization of engine set-points for improved transient performance & fuel economy.

Engine Controller Accomplishments

- Controller implemented on a micro-autobox on-board vehicle.
- Standardized and reduced calibration process for each hardware iteration.
- Real time optimization on dynamometer successfully drives the engine to a broad range of emissions/fuel economy trade-offs.
- Preparation for demonstration vehicle testing is currently underway, to quantify transient fuel economy impact on the vehicle.
- Future development of MBC includes
 - Predictive route adaptation

DETROIT

- Environmental and aging adaptation
- Virtual sensing for diagnostics

Aftertreatment System

- Lower backpressure device
- High performance SCR catalyst, thin-wall DPF, high flow DEF doser
- Insulated exhaust and ATS on the vehicle
- Very high NOx conversion over the road to maintain emissions compliance with high engine out NOx (steady state)

- Higher engine out NOx:PM ratio lends to an over the road passive regeneration tendency.
- Savings in over the road active regeneration fuel.

Compliance

Emissions

- EPA10 RMC and road load compliance demonstrated.
- Low temperature transient challenges being addressed by engine+ATS systems approach
- Real world degradation/ aging of a system required to consistently perform at high efficiency is a challenge

Waste Heat Recovery (WHR)

Coupled Expander Generator

- System functional on A-sample SuperTruck prototype.
- Successful integration with the HV hybrid system and a modified cooling package.

Scroll Expander

Prototype Components

•

WHR Progress & Accomplishments

Waste Heat Sources	Temperature Potential	Quantity
Exhaust	High	High
EGR	High	Low
CAC	Low	Low
Coolant	Low	High

- Primary contributor to PY4 efficiency improvement is EGR heat recovery and component optimizations.
- Current approach has numerous vehicle integration challenges.
- Analytical stretch projections assume improved component efficiencies, CAC heat recovery, and a low temperature condenser approach.
- Analytical stretch may prove to be impractical with state of the art vehicle technology.

WHR Vehicle Integration

	Electrical Vs. Mechanical Feedback		
	Electrical	Mechanical	
Pros	Better energy management	Higher efficiency	
Cons	Hybrid dependent	System sealing challenges w/ shaft seals, mag coupling etc.	

Process Temperature Impact on Design

- WHR vehicle cooling requires a holistic approach.
- Integrated vehicle, engine & WHR system models leveraged for design and layout.

ORNL Collaboration on Dual Fuel

- Explore dual-fuel operation within the constraints of a stock engine
 - Potential petroleum displacement in conventional modes
 - Potential η% and emissions impact in low temperature combustion (LTC) modes (55% BTE scoping)
- Evaluate LTC and limitations on a multi-cylinder engine
 - Combustion stability & phasing
 - High PMAX, dP/dt & EGR
- Detroit engine modified for PFI natural gas, DI diesel
 - Fyda Energy Solutions providing Sequential PFI hardware
- Engine installation and system integration underway, dual-fuel experiments scheduled for Summer 2014

• Fundamentally targeting a more optimum ROHR at part load, within the mechanical constraints of the engine

Detroit engine at ORNL

Promotional photos from Fyda Energy Solutions

55% BTE Scoping Activities in 2014

SuperTruck Partnerships and Collaborations

- Department of Energy: \rightarrow Roland Gravel \rightarrow Gurpreet Singh

 - \rightarrow Ken Howden \rightarrow Carl Maronde

SuperTruck Program Summary

- 50.2% engine BTE demonstrated including WHR.
- Weight neutral engine target; downsized engine with WHR.
- WHR functional on prototype A-sample SuperTruck.
- Remaining 1 year of SuperTruck.
 - Demonstrate efficacy and FE advantage of model based real time engine controls onboard the demonstrator SuperTruck vehicle.
 - Performance and controls tuning for engine & WHR ongoing for demonstrator chassis.
 - Demonstrator chassis and truck build ongoing; FE and performance demonstration to start September.
 - Sub-system level testing and analysis for 55% BTE building blocks initiated.
 - Final reporting.

