Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control

DE-FG36-05GO15049 University of Illinois at Urbana-Champaign (UIUC)/ ALCOA Project Period

> Armand J Beaudoin Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014

Project Objective

- Objectives
 - Develop integrated models that link properties of aluminum alloy plate to microstructure and rolling process parameters.
 - Validate the model by predicting the stress intensity factor at onset of crack branching in hard alloys within 20%.
 - Provide a technology delivery mechanism to industry through implementation of the integrated model in WARP3D.
- Complex structural aerospace components are high-speed machined out of thick hard alloy plate The problem?
 - A majority of the material is removed to form an integrated unit, providing considerable weight savings.
 - Part integration leads to 10% weight savings over a built-up structure
 - the push for increased performance and reduced weight has lead to more complex loading scenarios that activate different and more complex microstructure related failure mechanisms
 - fault tolerant design depends on understanding of crack growth!

Current practice

- Neither suppliers, nor OEMs, use anisotropic material properties as a routine part of design.
- OEMs design typically with linear elastic fracture mechanics, isotropic crack direction criteria (maximum tensile stress)
- In addition, traditional design is primarily concerned with in plane properties (L and LT directions).

• Our Approach

- Use a precompetitive material to develop new modeling technology
- account for the anisotropic behavior during crack growth.
- validate model to demonstrate that it adequately represents the real world performance of the material

How is it done today?

Technical Approach (Continued)

- We will provide an open-source code for the engineering analysis of fracture, validated through state-of-the-art experiments
 - UIUC (software & experiments)
 - Alcoa (experiments of crack growth in pre-competitive alloy)
 - Advanced Photon Source of Argonne National Laboratory (experiments on response in the microstructure)
- Unique combination of open-source model and experimental validation
 - Validated "mesoscale" model for directional response of hard alloys
 - Open-source platform for analysis of fracture

What is innovative?

• FAA forecast (2013)

Who cares?

- projects an average annual rate for growth for U.S. carriers of 2.9% through 2033 internationally, and 2.1% domestically
- fuel costs were \$0.96 in 2000 and \$3.00 2012 (FY 2012 dollars)
- the fuel consumption for the domestic fleet in Millions of Gallons is 18,500 in 2012E and projected to be 26,844 in 2033
- *"Aviation currently accounts for 2 to 3 percent of global carbon emissions, but this percentage is expected to increase with the growth in operations unless mitigated with new technology."*
- fleet-wide fuel efficiency improvements of 1%/yr are typically adopted for forecast baseline calculation (Horton, G., 2006; Owen et al., 2010)
- CO₂ is emitted high in the atmosphere and may have a greater radiative forcing effect than CO₂ emissions at ground level (Burkhardt and Karcher 2011)

• Material suppliers will

Who is the end user?

- bring the modeling technology in-house
- adapt to other current and future (proprietary) alloys to better understand alloy behavior
- design new alloys with different behavior
- work with OEMs to understand how best to take advantage of the alloy characteristics.
- Commercialization Approach
 - open-source software (WARP₃D)
 - Peer-reviewed publications to provide theoretical foundation of model and approach to application
 - conference presentations
 - sustained through open-source approach

Measure of Success

- Prediction the stress intensity factor at onset of crack branching in hard alloys within 20%
- Adoption of model technology by material supplier
- Assume an additional fuel savings of 0.1% by 2033
 - in the domestic fleet
 - achieved through light-weighting using advanced fabrication of nextgeneration aluminum alloy plate in structural aircraft components

Potential

Energy

- facilitated by the present work
- would save
 - 0.001 * 26,844 million gallons
 - 26.8 million gallons of jet fuel annually
 - at a cost of \$3.60/gal, (FAA current \$ projection for 2033), this is a savings of \$96 million/year.

Project Management & Budget

- Budget Period 1
 - 2005-2013
 - Integrated meso-/macro-scale model
 - coded & validated
- Budget Period 2
 - 2013-2015
 - Key milestone: accurately relate trends in crack growth in finished product with prior hot rolling practice

Total Project Budget	
DOE Investment	\$2,183,965
Cost Share	\$2,223,914
Project Total	\$4,407,879

Results and Accomplishments

- Accomplishments
 - Validation of mesoscale (grain-scale) model using synchrotron radiation (APS)
 - Implementation of mesoscale model in open-source code for fracture analysis (WARP₃D)
 - Successful prediction of driving forces for crack turning
- Future Work
 - Study of AA 7050
 - Predict crack turning trends following experimental matrix

Weak anisotropy	Strong Anisotropy
Temper Practice 1	Temper Practice 1
Weak anisotropy	Strong Anisotropy
Temper Practice 2	Temper Practice 2

 $\rightarrow \Delta a_{primary} \mathbf{S}$

Messner, Beaudoin & Dodds, *IJF*, submitted.