

We Put Science To Work

Practical Considerations for Development and Selection of Scenarios

Roger Seitz Savannah River National Laboratory

3 June 2014

PA&RA Community of Practice

SRNL-MS-2014-00076

Introduction

- Need set of cases to consider for quantitative assessments to evaluate effectiveness of disposal or remedial actions
- Emphasis on understanding roles and functions of "barriers" in context of system behavior rather than exact predictions (importance)
- Focus efforts where it matters
- Approaches have evolved to a topdown, bottom-up perspective for development of scenarios to consider for a given situation

Scenarios

"Scenarios" is used broadly for this presentation to represent the system and collection of cases (potential futures) that are considered in an assessment

- Sources
- Exposure Pathways
- Land Use/Receptors
- Conceptual Models
- Failure Assumptions
- "What-if"
- ...

The challenge is how to efficiently and defensibly decide what is to be considered

Contents

- Top-Down and Bottom-Up Approaches
- Historical Perspective (Remediation and Disposal)
- Systems Approach and Safety Functions
- Example
- Practical Considerations

Bottom-up and Top-down Perspectives

Bottom-up – List of Features, Events and Processes (FEPs), screen FEPs, develop scenarios by piecing together individual FEPs that are relevant for a given system

Top-down – develop system description, identify safety functions for different parts of the system, identify key aspects of the system, consider how functions could be compromised for key aspects

Conceptual Site Model (Remediation)

- Integrate all available site information and identify potential gaps (iterative) – detailed description
- Sources, pathways, and receptors
- Means to identify remedial alternatives
- Help focus resources on primary concerns
- 3-D "picture" of system, communication tool to explain key factors

Historical Perspective – Disposal

- 90s Elaboration on FEPs methodologies, FEPs lists, structured bottom-up approaches
- Early 00s Refinement of structured bottom-up approaches, detail added to FEPs lists, safety functions concept
- Late 00s Safety functions emphasis, experience leads to top-down approach supplemented by FEPs input ("top-down, bottom-up")

Systems Approach and Safety Functions

- Systems Approach Consider behavior of individual features in the context of overall system performance relative to the decision to be made
- Safety Functions Understanding of roles and functions of "barriers" in the context of total system performance
 - Complements NRC barrier analysis concept
- Often counter-intuitive behavior with multiple "barriers" and/or functions
- Top-down, performance-based

Example Systems Perspective and Safety Functions

Cover – Limit infiltration, biointrusion and direct contact with waste, airborne releases

Waste Zone/Source – Limit subsidence, drainage, delay transport

Liner – Collect leachate for operations, limit water and contaminant releases from system

Vadose Zone – delay and disperse radionuclides that may be released

Example – Humid Site (cover important and uncertain)

Recent Observations

"In all programmes, the starting point for the identification of safety-relevant phenomena and uncertainties is the development of a detailed description of the initial state of the system and its subsequent evolution. This description provides the basis for a main scenario, also termed normal evolution, base or reference scenario."

"It could be contended that the "top-down" approach described in recent safety assessments is in fact a more accurate representation of the approach that was in reality adopted (though not documented) in earlier safety assessments."

"It could further be contended that "top-down" approaches ... are, in fact, better described ... as "top-down/bottom-up"."

Summary

- Practical experience reflects a performance-based perspective

 gather existing information and develop initial concept,
 refine as needed
- Need system perspective when identifying potentially important safety functions and FEPs to help focus efforts where it matters – also, difficult to a priori recognize all important interactions
- Emphasize the need to integrate efforts and role of the process to help communications

Roger Seitz

Senior Advisory Scientist

Savannah River National Laboratory

Roger.Seitz@srnl.doe.gov

