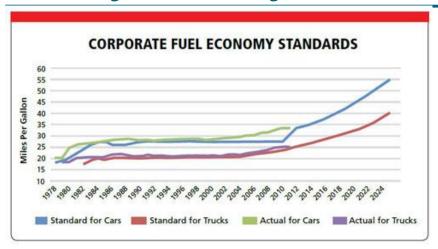
Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

Award # DE-EE0005753

Partners: The Ohio State University, Meridian Lightweight Technologies September 2012 – February 2016


Jon T. Carter, General Motors Company

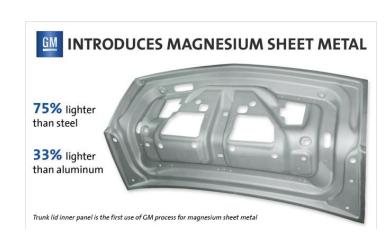
U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C.

May 6-7, 2014

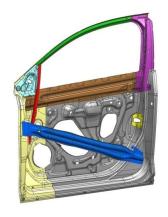
This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

Problem: CAFE standards require significant vehicle weight reductions by 2025.


- ✓ Solution must include a manufacturing process scalable to annual production of millions of vehicles.
- ✓ Vehicles must be competitive in cost, size, quality, and performance.
- ✓ Must meet safety standards.

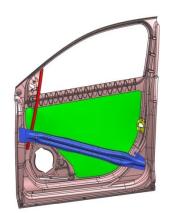
Solution: Design Magnesium die cast automotive components and develop manufacturing process


- Density of Magnesium = 1.7 g/cm³, vs. Aluminum (2.7) and Steel (7.8)
- Die casting → metal only where you need it; minimal yield loss
- Die casting → no rolling or welding
- Die casting → scalable to mass production
- Compatible with complex geometric features

Objective: Design, cast, fabricate, test

- Buick LaCrosse door
- Head-to-head comparison—Magnesium vs. Steel

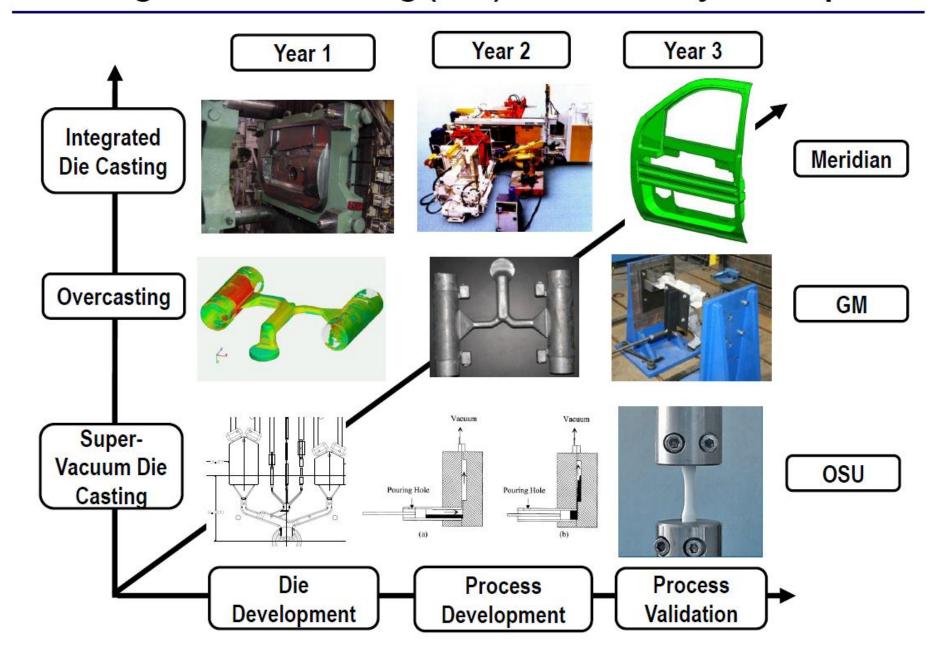
Technical Approach

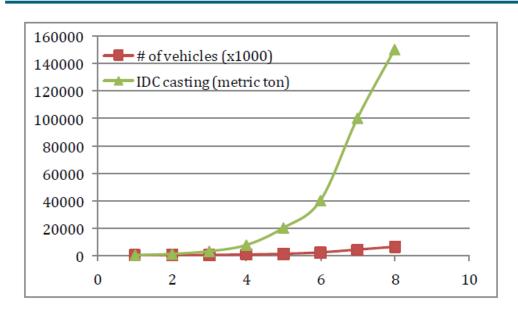


Today

- Sheet steel pieces with different thicknesses
- Welded and hemmed together
- Stamped into shape
- Excess discarded
- Some headerless have Mg panels, but typ. >3mm

New Approach


- Single Mg component + steel reinforcing bar
- Advanced Mg-Al-Sn alloy for higher strength and ductility
- Super vacuum die casting for complete fill
- Improved ductility with less entrapped air
- Meridian, EDAG, and GM have experience with die cast Mg components


Why this is a difficult problem:

- Low modulus of Mg → need design innovations to compensate
- Cannot cast closed sections → need design innovations to compensate
- Pushing the state-of-the-art for production wall thicknesses: $3mm \rightarrow 1.5mm$
- Complete filling of die cavity—significantly more difficult with thin walls
- Galvanic corrosion if Mg touches steel in wet areas
- Sharp fracture edges must be managed (ductility lower than steel or aluminum)

Integrated Die Casting (IDC) Process Project Scope

Transition and Deployment

Projected commercialization ramp-up in years from project completion date

Market: automotive

Applications: side doors, cars and

trucks

Benefits

- Reduced part count
- Fewer manufacturing steps
- 50% less embodied energy
- 50% less weight
- Improved fuel economy, economical route to meet CAFE standards

Transition and Deployment (continued)

Commercialization approach

- 1. Implement at GM:
 - Estimate the cost penalty and door mass reduction likely with this technology
 - compare with the \$/kg-reduced for other technologies
 - implement on an appropriate car model.
- 2. After GM success, Meridian will aggressively market the technology to other automotive OEMs and other manufacturers

Technology sustainment model: Pursue continuous improvement to cut the cost penalty per unit mass reduction, and thereby allow for more widespread implementation.

Measure of Success

Success

 A low-energy, lightweight, door technology option for car makers

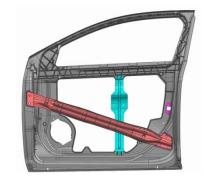
Energy impact (from technical energy models)

- 50% (o.1 Million Btu per door) less embodied energy than current sheet steel door.
- 7.4 kg/yr/vehicle CO2 reduction through improved vehicle fuel economy due to 60% door mass.

Economic impact (from technical cost models)

• Goal: \$1,500,000 cost saving per 100,000 panels vs. steel.

Project Management & Budget

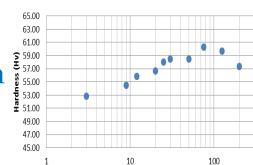

	DIE DEVELOPMENT (Budget Period 1) 9/1/12 - 5/31/14	
Task 1	Die design, simulation and manufacturing	
Milestone 1	Delivery of test specimen die, vacuum capability, overcasting die, and door inner die design.	
Gate 1	Die Review (Complete cavity fill and 1.5-2 mm thin-wall capability)	
	PROCESS DEVELOPMENT (Budget Period 2) 6/1/14 - 4/30/15	
Task 2	Casting process development	
Milestone 2	Delivery of door inner die, SVDC, overcasting and IDC process parameters and test specimens/castings.	
Gate 2	Process Review (less than 1% porosity and 1.5-2 mm thin-wall capability)	
	TESTING AND VALIDATION (Budget Period 3) 5/1/15 - 2/28/16	
Task 3	Testing and validation	
Milestone 3	Delivery of specimen, component and door system test results	
	PROJECT MANAGEMENT (All 3.5 years / entire project period)	<u>ן</u>
Task 4	Project planning, coordination and reporting	
Milestone 4	Delivery of energy efficiency of integrated die casting process	-
Gate 3	Final Review (50% energy efficiency improvement, economic benefits)	7

DOE	2672
Investment	
Cost Share	668
Project Total, k\$	3340

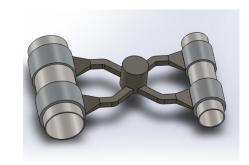
Results and Accomplishments

Status

Completing Task 1: Design, Simulation & Manufacturing



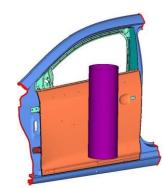
Milestones & Results


Door designed with CAD/CAE

Tensile/fatigue specimen die tested

Overcasting die designed Age hardening of Mg-7Al-2Sn

Time (Hr)



Work to do

Design door die

Develop casting and heat treating processes.

Build and test doors and components.

