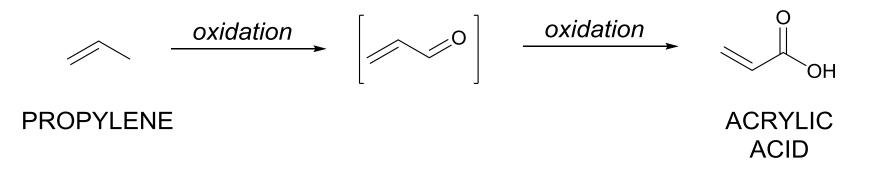
Conversion of Waste CO₂ and Shale Gas to High Value Chemicals

DE-EE0005766 Novomer/Praxair Budget Period 1

Scott Allen, Novomer

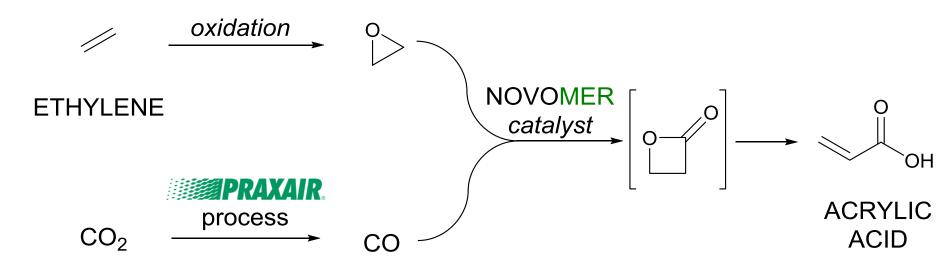
U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information.


Project Objective

- Novomer is developing a new route to Acrylic Acid and Acrylates using proprietary catalysts and processing
- The Novomer route will use **ethylene** as the feedstock instead of **propylene** and will use Praxair's CO₂ to CO technology
- Using Ethylene and CO as feedstocks provides economic advantages versus the incumbent process

Key Challenge: Developing a robust process and scaling up to a pilot/demonstration facility


Technical Approach

Current Process:

- Low selectivity
- High temperature, energy intensive process
- Capital intensive process
- Propylene feedstock prices tied to oil prices

New Process:



CARBON DIOXIDE

- Lower capital requirements
- High selectivity in each step
- Lower energy requirements
- Domestically sourced feedstocks

Transition and Deployment

Acrylic Acid End-use

Acrylate Esters - Paints, Coatings, Adhesives, Other
 Super Absorbent Polymers - Diapers

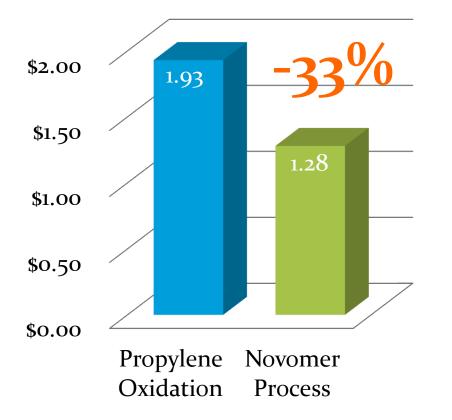
Transition and Deployment

Path to Market

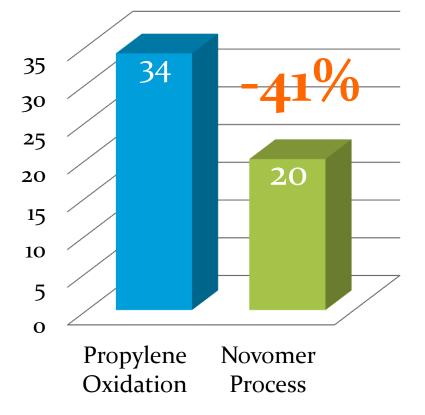
DOE Project Scope

Demonstrate technical feasibility of unit operations Combine unit operations in a continuous laboratory process

Pilot plant and validate economics


First commercial plant

Joint Development with Partner


Measure of Success

Acrylic Acid Cost (Transfer Price, USD)

Energy Footprint (10³ Btu/kg)

SAP grade Acrylic Acid US Gulf Coast Feedstock Pricing, 2013

Carbon footprint data from the Ecoinvent Industry Database

Project Management & Budget

Project Review	Milestones
Year 1 Review (7/31/14)	 All unit operations demonstrated individually and meeting initial technical goals for demonstrating feasibility Process economic and life cycle analysis models refined to identify key metrics for cost and energy advantaged process Initial demonstration of CO₂ -> CO process
Year 2 Review (7/31/15)	 All unit operations connected with recycle loops and steady state is achievable Run reactor continuously and meet key metrics identified in the economic model Validate assumptions on CO₂ -> CO energy requirements
Year 3 Review (4/31/16)	 Secure partner for pilot plant construction/operation Integrate CO from CO₂ into the process Validate and refine economic models with reactor data
Tota Proje Budg	ect Cost Share: $$1.6 \text{ MM} (24\%)$

Results and Accomplishments

- Unit Operations
 - Continuously stirred tank reactor: **operational**
 - Catalyst separations unit: **operational**
 - Acrylic acid conversion unit: **in progress**
 - Solid oxide electrolysis cell: **in progress**
- Economic model
 - Model refined, incorporating newest information on reactor performance and separations system