
Cross-cutting Technologies for Advanced Biofuels

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Report-Out Webinar February 9, 2012

Adam Bratis, Ph.D. NREL

Cross-cutting Technology Areas:

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Dr. Adam Bratis

Biomass Program Manager National Renewable Energy Laboratory Golden, CO

Feedstock Supply and Logistics

> growth, harvesting, delivery

Analysis

> economic, life-cycle, resource assessment

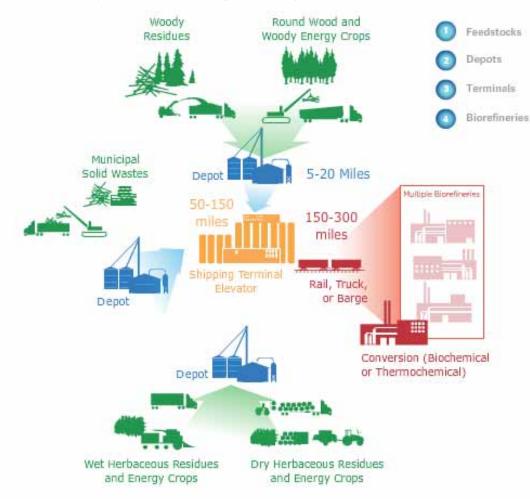
Catalysis

design, characterization, testing

Separations

> contaminant removal, product recovery

Cross-cutting: Feedstock Production


Current activities include R&D led by the <u>Sun Grant Initiative</u>, a network of land-grant universities, in partnership with industry, DOE National Laboratories, and USDA, to establish biomass feedstock productivity baselines. The 2010 regional bioenergy crop trials were located across the nation.

3

Cross-cutting: Feedstock Logistics

Current activities deal with major RD&D challenges associated with developing logistics systems for woody and herbaceous feedstock materials that are capable of supplying biorefineries with lower cost, high density, aerobically stable, and high-quality biomass material.

Existing Supply	Depot Supply
Systems	Systems
Nearer-term	Longer-term
Platform Focus	Platform Focus
(through 2012)	(2013+)
Access to a niche or limited feedstock resource	Access to a broader resource
Based on a dry	Allows higher-
supply system	moisture
design (field-dried	feedstocks into
feedstocks)	supply system
Designed for a specific feedstock type (dry corn stover)	Design addresses multiple feedstock types

Cross-cutting: Feedstock Challenges and Activities

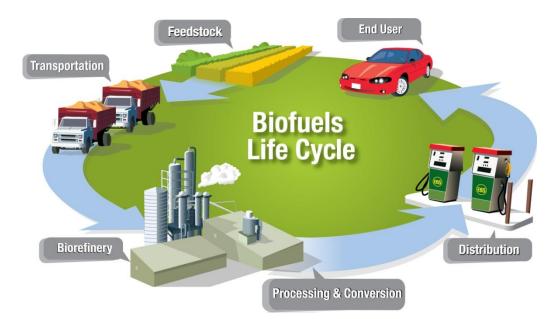
Ongoing Work:

- Billion Ton Study Update
- Sun Grant Initiative
- Uniform Format Feedstock Approach

Barriers:

- Low Energy Density
 - Current model is small, decentralized plants
 - Difficulty maximizing economies of scale
- Compositional Reliability/Variability
 - Inter-crop, inter-variety, seasonal,
 - Geographical, storage effects, etc.
 - Moisture, ash, sugar content, etc.
- High Relative Cost
 - Largest cost contributor to biofuels production
- Impact of Harvesting/Storage on
- Downstream Conversion
 - Densification and product uniformity strategies

Critical R&D Activities:


- Explore densification strategies to lower feedstock cost
- Define specifications at
 Feedstock/Conversion Interface
- Develop genetically modified feedstocks with higher sugar composition and lower recalcitrance
- Develop harvesting, collection and storage methods that minimize contamination and sugar degradation
- Determine impact of harvesting/logistics strategies on downstream conversion
- Understand and optimize the sustainability aspects of feedstock harvesting, logistics and storage operations 5

Cross-cutting: Analysis

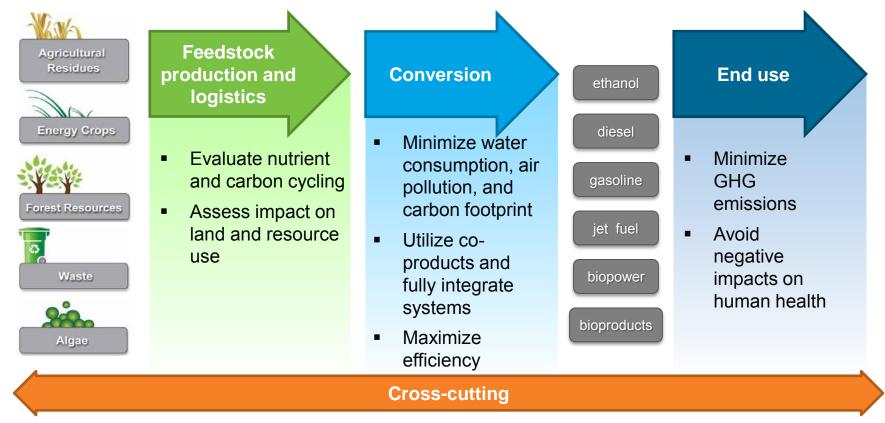
Current activities provide the analytical basis for Biomass Program planning, identify areas of high impact research, and progress assessments, define and validate performance targets for biomass technologies and systems, review and evaluate external analysis and studies, and contribute engineering analyses.

State-of-technology technoeconomic assessments

Land-use change model development

GIS-based assessment of optimal feedstock resource potential

Well-to-wheels analysis and expansion of GHG Emissions and Energy Use in Transportation (GREET) model for emerging biofuels production pathways


Cross-cutting: *Techno-economic Analysis*

	2007	2008	2009	2010	2011 Targets	2012 Targets
Minimum Ethanol Selling Price (\$/gal)	\$3.64	\$3.56	\$3.19	\$2.77	\$2.56	\$2.15
Feedstock Contribution (\$/gal)	\$1.12	\$1.04	\$0.95	\$0.82	\$0.76	\$0.74
Conversion Contribution (\$/gal)	\$2.52	\$2.52	\$2.24	\$1.95	\$1.80	\$1.41
Yield (Gallon/dry ton)	69	70	73	75	78	79
Feedstock						
Feedstock Cost (\$/dry ton)	\$77.20	\$72.90	\$69.65	\$61.30	\$59.60	\$58.50
Pretreatment						
Solids Loading (wt%)	30%	30%	30%	30%	30%	30%
Xylan to Xylose (including enzymatic)	75%	75%	84%	85%	88%	90%
Xylan to Degradation Products	13%	11%	6%	8%	5%	5%
Conditioning						
Ammonia Loading (mL per L Hydrolyzate)	50	50	38	23	25	25
Hydrolyzate solid-liquid separation	yes	yes	yes	Yes	Yes	no
Xylose Sugar Loss	2%	2%	2%	2%	1%	1%
Glucose Sugar Loss	1%	1%	1%	1%	1%	0%
Enzymes						
Enzyme Contribution (\$/gal EtOH)	\$0.39	\$0.38	\$0.36	\$0.36	\$0.34	\$0.34
Enzymatic Hydrolysis & Fermentation						
Total Solids Loading (wt%)	20%	20%	20%	17%	17%	20%
Combined Saccharification & Fermentation Time (d)	7	7	7	5	5	5
Corn Steep Liquor Loading (wt%)	1%	1%	1%	1%	0.60%	0.25%
Overall Cellulose to Ethanol	86%	86%	84%	86%	86%	86%
Xylose to Ethanol	76%	80%	82%	79%	85%	85%
Arabinose to Ethanol	0%	0%	51%	68%	80%	85%

7

Cross-cutting: Sustainability

Current efforts are developing and integrating the resources, technologies, and systems across the supply chain needed to grow a biofuels industry in a way that protects the environment and enables sustainable future resources

- Life-cycle analysis of water consumption and GHG emissions
- Land-use change modeling

- Water quality analysis
- Environmental, economic, and social factors

8

Cross-cutting: Analysis and Sustainability

ENERGY | Energy Efficiency & Renewable Energy

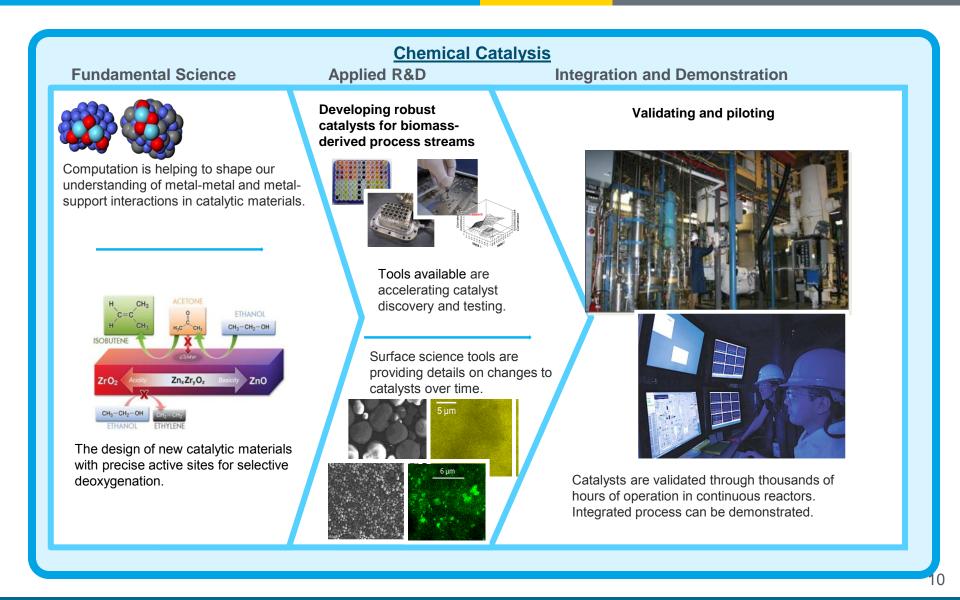
Ongoing Work:

- Peer Reviewed techno-economic analyses
- WTW GHG Emission Modeling
- GIS based Resource Assessments

Barriers:

- Availability of High Quality, Public Data
- Still "Developing" Process Strategies
 - many potential pathways/intermediates to hydrocarbon fuels/products
 - some ill-defined unit operations relative to cellulosic ethanol
 - New separation/product recovery strategies and lignin utilization strategies needed
- Lack of Consistent Analytical Approach
 - assumptions drive recommendations

Critical R&D Activities:


- High level Hydrocarbon Fuel Scoping Study
 - compare a variety of bio-oil and sugar intermediate routes to HC fuels; identify baselines and/or gaps in experimental information, guide R&D opportunities

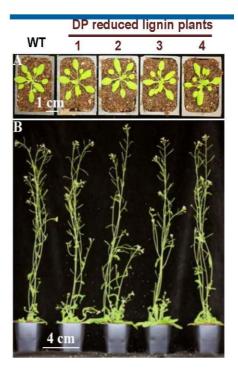
Refinery Integration and Co-location Study

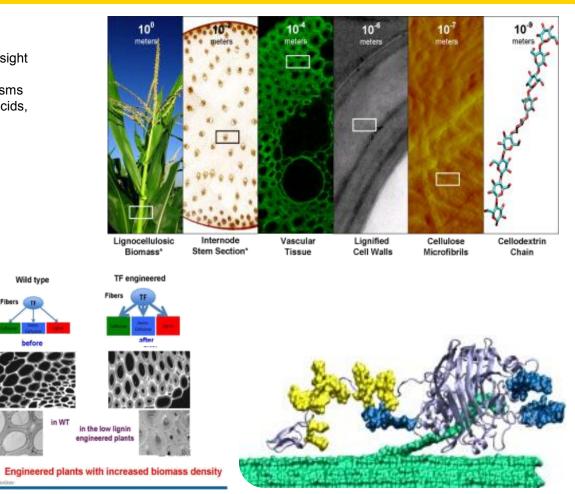
- evaluate economic impact of refinery integration, perform comprehensive TEA to guide selection of feasible intermediates, examine trade-offs between economy of scale advantages in refinery and transportation
- Lignin Utilization Study
 - evaluate fuel and value added product options that could be generated from lignin or lignin monomers/oligomers

Cross-cutting: *Catalysis*

Energy Efficiency & Renewable Energy

Cross-cutting: *Catalysis*


ENERGY Energy


Energy Efficiency & Renewable Energy

Biotechnology and Biocatalysis

Research provides insight into the cell wall. The insight is used to develop new plant species, improved enzymes for deconstruction, and advanced organisms for converting sugars/carbohydrates into organic acids, alcohols, and hydrocarbons.

ibei

Cross-cutting: *Catalysis*

Ongoing Work:

- Catalyst Design, Characterization and Testing
- Enzyme/Organism Characterization and Development
- Biomass/Catalyst Surface Characterization

Barriers:

- Poor Selectivity Towards Desired Reactions
 - Decreases process/carbon efficiency
 - Increases coke formation/volatiles formation/catalyst deactivation
 - Low sugar utilization in fermentation

Poor Understanding of Rxn Fundamentals

- Kinetics, mechanisms, competing reactions, surface interactions in complex mixtures
- Limited Catalyst Lifetime Data
 - Catalyst deactivation and organism/enzyme inhibition an issue
 - Catalyst stability and regenerability

Critical R&D Activities:

> Enhance selectivity towards desired reactions

U.S. DEPARTMENT OF

ENERG

 Better understanding of catalyst-biomass surface interactions through modeling, spectroscopy, and empirical relationships

Investigate novel processes and catalysts

- *H*₂ addition during pyrolysis, hydrogen
- Donor/shuttle molecules, consolidated
- Bioprocessing, thermo-tolerant enzymes,
- Genetically improved organisms
- Improve catalyst lifetimes
 - Develop more robust catalysts and inhibitor tolerant organisms
 - Improve aqueous phase catalysts (stability and selectivity) in presence of hydrolyzates
- Industrially Relevant Long Term Testing

Cross-cutting: Separations

Ongoing Work:

- Inhibitor Mitigation/Removal from Slurries
 - De-acetylation
- Gas/Liquid Filtration of Pyrolysis Vapors/Oils

Barriers:

- Product Recovery for HCs Different than EtOH
 - Potentially less energy intensive but more complex than fractional distillation
- Poor Understanding of Purification Needs
 - Emerging organisms/catalysts will have own set of tolerances to inhibitors/contaminants
 - Extensive concentration of intermediates?
 - Solid/liq. separation in intermediates/products
- Economic Routes to Reagent Recycling and Product Recovery
- Membrane/Filter Durability for Biofuels

Critical R&D Activities:

 Explore Feasibility of Current Technology to Biomass Applications

U.S. DEPARTMENT OF

- Identification and Mitigation of Key Inhibitors/Contaminants
- Development of Novel SeparationTechniques/Materials
- Integrate Separations and Conversion
 - Product removal during fermentation
 - Catalysis during filtration
 - Reactive distillation
- > Explore Reagent Recycling Strategies
- Industrially Relevant Long Term Testing