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Program Approach 
National Program Lead by DOE 
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http://www.blm.gov/nhp/index.htm
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Historic DOE Budgets 
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DOE Gas Hydrate R&D 
Program Spending 

Large Field 
Programs 
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• The federal role in gas hydrate science and 
technology development is widely accepted 

– tangible, wide-ranging, public benefits. 

– consensus that DOE has managed the effort well n 

 

• The primary goals and next steps are clear and the 
groundwork well laid 

– monitored production tests (Alaska first, then marine) 

– sampling/analysis of marine occurrences 

– resource confirmation in other US OCS areas 

– refinement/field calibration of exploration technologies 

– integration of GH science into climate change models 

 

• Lab and modeling work needed as support but the 
answers will come from the field 

– the work to be done is complex and costly 

– industry/int’l perspectives change rapidly.  Most of the 
industry is increasingly disinclined to lead further projects 

– Significant international interest 

MIT, 2011 

NRC, 2010 

NPC, 2011 



Global Resource Estimates 
Evolution with time 



“The gas hydrate resource is…” 

GAS-IN-PLACE  (GIP)    
• f(geology) 
• GIP = 100,000s tcf   

 
TECHNICALLY-RECOVERABLE  (TRR) 
• f(GIP, tech., timing, policy, reg.) 
• TRR = 85 tcf (AK) 
• Best Guess:  TRR = 10,000 tcf vicinity 

 
ECONOMICALLY-RECOVERABLE  (ERR) 
• f(TRR, market conditions) 
• Gas Hydrate (2014)  ERR = 0 
• Best Guess:  TBD 

 
RESERVES (Various categories) 
• f(ERR*, drilling activity, data certainty) 
• Gas Hydrate (2014)  Reserves = 0 

after Boswell and Collett, 2011 

 



Gas Hydrates Occurrences 



PORE FILLING (Sand/Silt Reservoirs) 
• High saturation 
• High intrinsic reservoir quality 
• Better geomechanical stability 
• Proven production concepts – 

depressurized; stimulated 
 

GRAIN-DISPLACING  
• Low-to-moderate saturation 
• Very poor reservoir quality 
• No geomechanical stability 
• Is mining the only method? 

 

DISSEMINATED (silty clays) 
• Large in-place resources 
• Very low saturations 
• No reservoir quality 
• No geomechanical stability 

 

SEA-FLOOR MOUNDS 
• Small size, ephemeral 
• Associated unique biological 

communities 

The Most Favorable Form: Pore-Filling in Sediment with K 

 



Production Technology 
To date, only short-duration scientific field experiments 

 

 

• Chemical  (Ignik Sikumi, 2012) 

– Inhibitor Injection:  Costly?  Ineffective 
– CO2-CH4 Exchange 

 

• Thermal  (Mallik, 2002) 

– Tests and Modeling  Not feasible 
– Stimulation/Near-well bore 

maintenance 
 

 

• De-pressurization (Mallik 2007, 2008;  
Nankai, 2013) 

– Simplest 
– Demonstrated in field tests and 

simulation  



Depressurization 
Production sustained over short test durations 

 

Dallimore et al., 2005 

700 mcf/d  



Production Rate 
Numerical simulations give promising results 

• Field Tests 
– Onshore  60 mscf/d 
– Offshore  700 mscf/d 

 
• Simulation - Onshore 

– ~4,000 mscf/d 
 

• Simulation - Offshore 
– Offshore:  up to 40 mmscf/d 
– Well design, Geology, etc… 

 

• Required for Viability 
– Varies with region, costs, etc 
– The modeled rates are 

favorable 

 



• Wells will be complex 
– Deepwater 
– Horizontal 

– Cold  flow assurance 
– Low-pressure  artificial Lift 
– Effective and immediate intervention during shut-in 
– Handling and disposal of produced water (not fresh)  

– Endothermy  periodic wellbore maintenance 
 

• Wells will be shallow (sub-seafloor) 
– Unconsolidated sediments and seals 
– Likely to be fine-grained sands with substantial fines intermixed or in close 

proximity 
– Effective sand control -- subsidence 
– Reservoir (prior to production) has lower K than the seals 

Production Challenges 
The most favorable accumulations 

 



Mt Elbert Gas Hydrate Stratigraphic Test Well (2007) 
Drilling tested a previously undrilled fault-block (BPXA) 

After Inks et al., (2009) 

http://www.blm.gov/nhp/index.htm
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Alternative Test Site Evaluations (2014) 
Unleased and set-aside state lands (AKDNR, USGS) 
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Ongoing Projects 

• IA  DOE  USGS 
– USGS contributions to effort in Alaska 

 

• IA  USGSDOE 
– Part of larger USGS study funded by BLM 
– Production models for five “type” areas 
– Life Cycle Assessment 
– Subsidence/other env costs 
– Costs/Economics 

 

• NL FWPs 
– LBNL,PNNL, NETL to maintain best 

possible simulation capability for potential 
ANS test sties 
 

• CA  Texas A&M and Ga Tech  
– Coupled geomechanical-reservoir 

simulation model 

 
 

 

 

http://www.blm.gov/nhp/index.htm


GH Production Modeling 
Field data enables more complex models 

• Early 2000s 
– Low rates, long lag times, large 

cumulatives but very long 
production profiles 
 

• Today 
– High sensitivity to reservoir 

quality, heterogeneity, 
temperature 

– Intriguing rates obtainable in 
certain settings: 1s to 10s 
MMcf/d with minimal lag times, 
short production profiles 

– Recoverability theoretically high 
(60-85%) 
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http://www.lbl.gov/
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• First hydrate drilling and 
sampling in the Gulf of 
Mexico 
 

• First measurement of 
physical properties of core 
while retained under natural 
pressures 
 

• Confirmed ability to 
characterize low-saturation 
hydrates pre-drill 
 

• Confirmed ability to safely 
drill low-saturation, deep-
water, gas hydrates 
 

• With goals achieved, NETL 
successfully transitioned the 
JIP to resource evaluation 

 

Marine Resource Characterization 
Began with focus on Gulf of Mexico drilling hazards, JIP Leg I (2005) 

http://upload.wikimedia.org/wikipedia/en/2/28/JOGMEC_logo.jpg
http://www.ldeo.columbia.edu/
https://scripps.ucsd.edu/


BOEM Gulf of Mexico Assessment: (2008) 
Mean estimate ~6,700 tcf GIP in Sand Reservoirs  

MEAN GIP (all lithologies)   
21,444 TCF   

       

MEAN GIP (sand-hosted)   
6,717 TCF   
       



Gulf of Mexico: GC955 



DOE/CVX JIP:  GOM Gas Hydrates Exploration (2007-2009) 
4 of 7 GOM exploration wells discover gas-hydrate bearing sands  

http://upload.wikimedia.org/wikipedia/en/2/28/JOGMEC_logo.jpg
http://www.ldeo.columbia.edu/


Walker Ridge 313 Geophysical Prospecting 



Nominal Gulf of Mexico Coring Plan (2010-11) 
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Gulf of Mexico JIP:  Advance Pressure Coring Capabilities      
Current Activities 

• Synthesized Laboratory samples not 
sufficient to understand the nature of marine 
gas hydrate.  In situ data collection is limited  

• Off-the-shelf coring equipment can not 
deliver analyzable samples to the surface 

• JIP is  develop coring and core analyses 
equipment to enable future field data 
collection in resource-quality settings 

• 2006 collaborations with India 

• 2013 collaborations with Japan in design 
and field testing of components 

• Pressure core tool failed several field tests 
at Catoosa site, November 2013.  Expert 
group assembled to develop plan to repair 

• Chevron has determined to end contract at 
end March, 2014.  

 

 

 

http://upload.wikimedia.org/wikipedia/en/2/28/JOGMEC_logo.jpg
http://www.google.com/imgres?imgurl=http://www.linkocean.cn/Geotek/geotek_logo.gif&imgrefurl=http://www.linkocean.cn/Manuf%20list.htm&usg=__IPRyuRzHZAmKphIgNMdDiWxrHCc=&h=155&w=230&sz=4&hl=en&start=16&tbnid=RaqCD5TX7_a9hM:&tbnh=73&tbnw=108&prev=/images?q=GeoTek&hl=en
http://www.aist.go.jp/index_en.html
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• Ongoing G&G projects with Ohio St., Ok 
St., Fugro, UT 

• New (FY13) project with Ga. Tech to 
develop borehole tool for in situ 
measurement of sediment 
geomechanical properties 

• Conduct marine coring+ program 
planning workshop with Fugro, USGS, 
AAI, Geotek, etc… 

• Opportunities 

– East Coast LWD Exploration -  further 
inform BOEM assessment 

– Core sample acquisition/analysis from 
confirmed GOM reservoirs  

• Expand model to include 
geotechnical/academic drill ships.   

 

Plans for Marine GH Characterization 
 



US Atlantic Margin 
Mean Estimate of ~15,785 tcf in Sand Reservoirs 

 MEAN GIP                                  
(all lithologies)   

21,702 TCF         

 GIP (sand)   
15,785 TCF         



‹#› 

FY13 Interagency:  GoM 2D and OBS Seismic 
Conducted by USGS;  Planned and co-funded by USGS, DOE, and BOEM 

• Collect adv. seismic at JIP Leg II 
sites – not possible under CA due to 
new DOE NEPA guidance 

• USGS has collected 2D (pseudo 3D) 
and OBS 

• First OBS at sites with known 
concentrated hydrate and extensive  
log calibration data. 

• Improved interpretation of detailed 
architecture at each site: guidance to 
future coring programs 

• Insight into GH exploration using Vs 
in addition to traditional Vp data 

• Completed Spring, 2013 from RV 
Pelican 

• USGS ~$650k; DOE ~$650k; BOEM 
~$175k 
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FY13 New Project:  The University of Texas - Austin 
Methane Transport and Hydrate Accumulation in Coarse-Grained Reservoirs 

• Global hydrate models assume all methane is locally-sourced. Even the 
recent BOEM GoM assessment assumed primarily bio-genic gas.  
However, JIP Leg II drilling suggested significant sourcing from deeper 
sources. 

 

 

• UTA will model various modes of gas 
sourcing/migration under the constraints of 
the WR313 geology and drilling observations 

• Gain insight on what is needed to create 
resource-relevant accumulations (dissolved 
or free gas; local or distant gas). 

• Gain insight on the time dimension of 
methane hydrate reservoir development 

• Inform future assessments. 

• Partners:  The Ohio State University, 
Columbia University – Lamont Doherty Earth 
Observatory 

 



Gas Hydrate in the Global Environment 
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• DOE has supported this research since ~2006  
– …it is stipulated in the MHR&D Act 
– …it is a recognized science need that the 

cooperating federal agencies cannot fund. 
– …it is an opportunity to demonstrate integrated 

consideration of all public issues related to a 
potential new resource prior to the “land rush” 

– …serious scientific bang for the buck 
 

• Three high-value projects awarded in FY13 
have enabled a broad portfolio that is 
accessing large external resources 

– Alaska (shelf and slope) w/ USGS, Scripps, SMU 
– Norway (slope) w/ Oregon St. 
– U.S. East Coast  w/ MIT, USGS, UNH 
– U.S. West Coast  w/ U. Washington 

 

• Current portfolio could support determination 
re the nature of potential near-term GH/GCC 
linkages  
 

 

Plan for Gas Hydrate – Global Environment 



Interagency R&D Roadmap 



Methane Hydrate Fellowship 
9 selected since 2007 

Hugh Daigle (Rice) 
Now with U Texas 

Ann Cook (Columbia)  
Now at Ohio St.  

Laura Brothers (USGS)                                    
Now at USGS  

Monica Heinz (UCSB)                  
Now with ARCADIS 

Rachel Wilson (FSU)                  
Active NETL-NAS Fellow 

Laura Lapham (FSU)                
Now at U. Maryland  

Evan Solomon (Scripps)            
Now at U. Washington  

Jeffrey Marlow (Cal Tech)  
Active NETL-NAS Fellow  

Hugh Daigle (Rice)                
Now at U. Texas 

Jennifer Frederick (UC 
Berkeley)  Active at DRI 



Outreach 



A Global Gas Hydrate Assessment  
UN Environmental Programme (scientific editors Boswell, Dallimore, Waite) 

• Illustrated, comprehensive review of gas 
hydrate science  

– hard copy and web product 
– designed for national resource policy 

decision-makers, media, public 
– coordination by UNEP-Grid 
– steering committee from participating 

groups 
– www.methanegashydrates.org 

 

• Two Books - Seven Chapters 
– GH science 
– GH in global carbon cycle 
– GH and climate change 
– GH in global energy systems 
– GH resources/exploration 
– GH production technologies 
– GH societal implications 
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