Breakout Group 2: Membrane Electrode Assemblies

PARTICIPANTS

Name	Organization		
Jim Goldbach	Arkema, Inc.		
Kev Adjemian	Nissan Motor Co.		
Eric Funkenbusch	3M		
John Kerr	Lawrence Berkeley National Laboratory		
Jonathan Sharman	Johnson Matthey Fuel Cells		
Jean St-Pierre	University of South Carolina		
Huyen Dinh	National Renewable Energy Laboratory		
Bryan Pivovar	Los Alamos National Laboratory		
Jim Martin	Lockheed Martin		
Sami Mardini	Superprotonic		
Reg Tyler	U.S. Department of Energy/Golden Field Office		
Craig Gittleman	General Motors		
Don Gervasio	Arizona State University		
Eric Shrader	Palo Alto Research Center		
Robert Miller	MTI Micro		
Kathi Epping (Facilitator)	U.S. Department of Energy		
John Kopasz (Scribe)	Argonne National Laboratory		

Breakout Group 2: Membrane Electrode Assemblies

Breakout Group 2: Membrane Electrode Assemblies

RD&D NEEDS

MODEL & MEASURE (fundamental data)	DEGRADATION MECHANISMS (especially for new materials)	ELECTROLYTE/ CATALYST INTERACTION AND HIGH TEMPERATURE/LOW RELATIVE HUMIDITY CATALYST IONOMER & CATALYST INTERACTION
 <u>Need fundamental data on and understanding of all MEA components</u> Develop methods to quantify internal surface chemistry of porous materials (porosity, structure, etc.) Measurements of mass transfer and electron transfer in each layer of MEA and through interfaces, as well as physical properties of MEA (or layers), as a function of temperature, RH and time, to validate models Model electron, proton, and mass transfer (as function of temperature, RH and time) in each MEA layer and through interfaces: Electrode Membrane-electrode GDL-bipolar plate Catalyst-support Catalyst-membrane Other multiple phase interfaces (other interfaces between phases in catalyst layer, GDL or membrane) Macroscopic and nanoscopic (molecular level) interface characterization (property and composition distribution) Models that determine MEA performance based on MEA components and structures 	 Understanding of fundamental degradation mechanisms for known and new materials Effects of impurities on degradation (especially air impurities) How do chemical/mechanical structural changes affect performance? How does high current density affect degradation? 	 Modeling/study of ionomer/catalyst/support triple phase interface Electron transport Proton transport Gas transport Water mobility Interfacial adhesion Modeling of electrochemistry and transport without water or proton solvent Studies of ionomer/catalyst interactions - characterization and modeling of interactions Modified electrode structures for non-traditional catalysts - can't expect non-PGM catalysts to behave like platinum Modeling/study of the ionomer/catalyst/support triple phase interface

Breakout Group 2: Membrane Electrode Assemblies (Cont'd)

RD&D NEEDS

MANUFACTURING/ PROCESSING (Lab scale to roll-to-roll processing and structure- manufacturing-performance relationships)	IMPROVED MATERIALS	Transport Issues	OPERATION AT INCREASED CURRENT DENSITY/ POWER DENSITY
 Develop structure-manufacturing- performance relationships Develop on-line composition and characterization techniques, performance measurements Develop simpler, more easily processed MEA structures (eliminating components, interfaces) 	 Improved catalysts with higher activity and higher efficiency Catalysts and catalyst layer ionomers that operate at high temperature and low RH Improved membranes that operate hot and dry and cold and wet Correlate morphology to properties such as conductivity, gas permeability, mechanical properties, etc. More durable membranes, catalysts, supports, and gas diffusion layers 	 Fundamental understanding of the role of the GDL Develop measurement methods for Porosity Pore structure Pore surface chemistry (hydrophobicity/ hydrophobicity/ hydrophilicity, etc.) Capillary pressure Permeability In-situ liquid water In-situ measurements of electron and mass transfer in components and at interfaces, including Water transport Gas transport Proton transport Electronic transport 	 Current density levels need to increase New catalysts that provide higher current density/power densities Develop methods to render 3-dimensional catalyst microstructures of nanoporous materials Develop structure- composition- performance relationships for electrodes