Fuels and Lubricants to support Advanced Diesel Engine Technology

Rodica A. Baranescu International Truck and Engine Corporation

by

11th Diesel Engine Emission Reduction Conference Chicago, August 21-25, 2005

Fuel for Advanced Commercial Transportation

Fuel issues - global economy implications
 New technology introduction worldwide
 Globalization of environmental emission standards
 Fuel characteristics harmonization

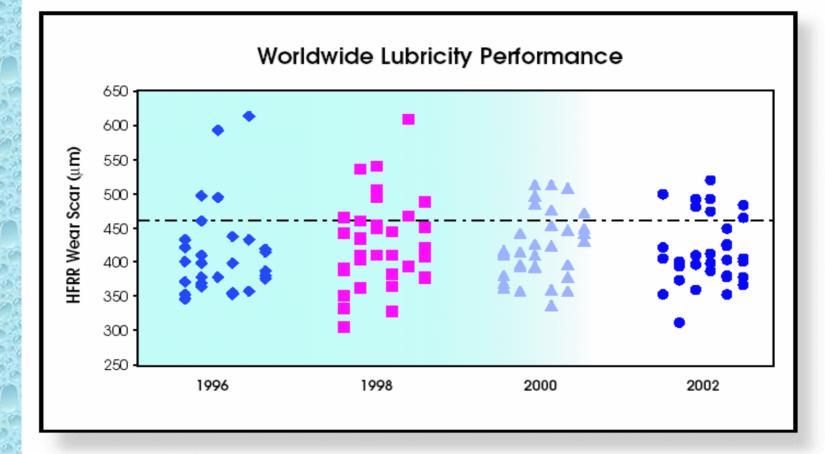
 World Wide Fuel Charter- a framework for fuel evolution and harmonization; developed jointly by: Alliance, EMA ACEA JAMA

World Wide Fuel Charter

- Recognizes technological differences worldwide

 Four categories of diesel fuels: I;II;III;IV
- Provides a road map for strategic fuel development
 - (critical elements)
 - Sulfur, cetane number, alternative blends
- It is a living document; it faces challenges

Diesel Fuel Quality- What have we achieved?


- ULSF the "technology enabler" for 2007 emission standards – on its way!
 - By June 2006, over 80% of on-road diesel fuel will have less than 15 ppm Sulfur!
 - By 2010, all on-road diesel fuel will be ULS
 - In 2010-2014, off-road diesel fuel will be ULS
- Performance of catalytic systems will be maximized (new technology)

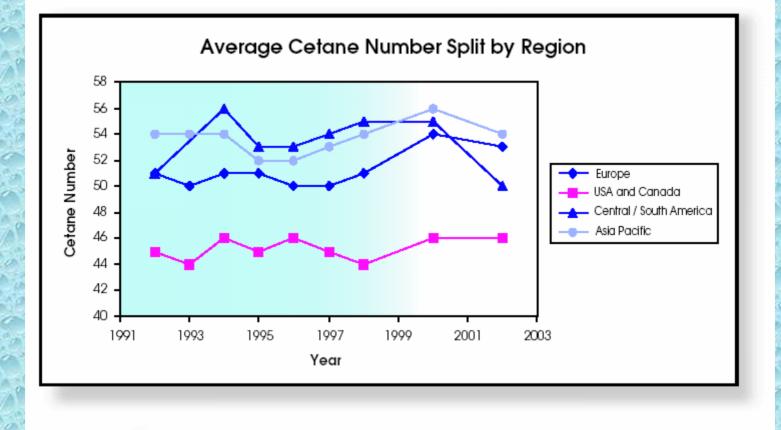
• Particulate reduction benefits for all vehicles (new and old)

Lubricity ?

- Lubricity has become a requirement for diesel fuel (included in standard)
- Is the current specification good enough for 2007 Advanced Fuel Injection System?
- Will ULSF have adequate lubricity?
 - Some concerns with early ULSF in the market

Trend of Diesel Fuel Lubricity

Source: Infineum Worldwide Winter Diesel Fuel Quality Survey 2002


Diesel Fuel Quality- Where do we fall short?

- Performance and Sociability Characteristics of Diesel Engine:
 - ease of start; noise,
 - white smoke; odor
- Influenced by diesel fuel properties:
 - Cetane Number
 - Low Temperature Operability
- Affect all diesels but especially, buses, diesel cars, pickup trucks, SUVs

Cetane Number- CN

- ASTM D 975 specifies CN of 40 min.
- This value has not changed since first standard issue!
- Diesel engine technology has changed!
- Market surveys show that average CN is higher!
- Isn't it time to change CN?

Worldwide Trend of Cetane Number

Source: Infineum Worldwide Winter Diesel Fuel Quality Survey 2002

Premium Diesel Fuel

- National Council on Weights and Measures (NCWM) approved a Premium Diesel Fuel Specification – effective January 1, 2004 published in the 2004 NIST Handbook
 - Cetane Number (47 minimum)
 - Low Temperature Operability
 - Thermal Stability
 - Lubricity (520 HFRR)
- This specification would give customers a choice for a better diesel fuel
- Would enhance the performance of new diesel vehicles in the market and demonstrate the real potential of advanced diesel technology.

Other Diesel Fuel Issues

- Energy content
- Fuel additives
- Stability (as sulfur is removed)
- Low temperature operability
- Cleanliness (water and impurities)
- Worldwide harmonization of fuel specification

Lubricants Issues

- New generation of lubricants PC-10 Category is under very active development in US
 - Compatible with the 2007 engine technology
- Industry-wide effort that includes:
 - Trade associations
 - Independent test laboratories
 - Corporate laboratories
- Complex process development with large participation, cost sharing and aggressive test schedule, to provide timely introduction of PC-10 lubricants by mid- 2006

Lubricants Issues-(cont'd)

• Challenges:

Provide equal or better performance of oils, while protecting after treatment systems

- Maintain or improve oil drain intervals

• Chemical limits for :

- Sulfated ash (1.0% max)
- Phosphorus (0.12% max)
- Sulfur (0.4% max)

Development of new additives

Alternative Fuels

- Natural Gas
- Biodiesel
- Syntethic Diesel (FT fuel/GTL fuel)
- Dimethylether (DME)
- Alcohols (methanol, ethanol)
- Blends (diesel/water, diesel/alcohol)

Alternative Fuels - Relevance

Driving forces

- Lower emissions (some pollutants)
- Domestic resources, less dependence on imports
- Long term potential when crude oil is depleted

Alternative Fuels- Challenges

- Availability,
- Infrastructure
- Technology maturity
- Cost
- Fuel quality, specifications
- Emissions?

Future Engines; their Fuel Requirements

- Hybrid (IC/Electric) powertrain
 - Increased performance and efficiency
 - Lower emissions
 - Same fuel requirements
- Hybrid combustion (HCCI)
 - Fuel Characteristics ?
- Fuel Cells
 - Hydrogen fuel energy system
 - Fuel production and distribution
 - On-board storage
 - Fuel usage (engines, cells, etc.)
 - Applications

Conclusions

 Fuels and compatible lubricants are an "enabling technology" for the development of low emissions engines:
 (both traditional and new concepts)

Conclusions

- Fuels and lubricants formulations will maximize the potential of high performance engines with benefits in:
 - Environmental impact (emissions and greenhouse gases)
 - Fuel efficiency (better use of resources)
 - Customer acceptance
- The conventional fuels will continue to support transportation (as long as they can be produced economically from existing resources)

Conclusions

 Alternative fuels and energy will evolve and grow in competition with traditional fuels

The energy picture of the future will be a combination of various resources and technologies