Daimler's Super Truck Program; 50% Brake Thermal Efficiency

2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference

Marc Allain, David Atherton, Igor Gruden, Sandeep Singh, Kevin Sisken

Detroit Diesel Corporation – Daimler Trucks North America

Super Truck Technology Elements

Super Truck Core Engine Development

Demonstrate 50% brake thermal efficiency via:

- Engine downsizing (higher BMEP)
- Higher compression ratio
- Improved combustion system
- Air system optimizations, reduced EGR
- Reduced parasitic
- Waste heat recovery

Engine Down-Sizing and Down-Speeding

- Baseline '09 15-liter
- Super Truck 11-liter

- Lower road load horsepower due to vehicle improvements
- Down-sized engine to raise road load BMEP
- Down-speeding for friction reduction
- BSFC reduction 6-8%

Combustion Efficiency

- Combustion Chamber
 - Piston / Head / Liner Shape & Robustness Refinement
 - Increased Compression Ratio & Cylinder Pressure
 - Thermal Coatings & Focal Point Cooling
- Injection
 - Evolutionary Nozzle Geometry
 - Optimized Hydraulic Flow
 - Dynamic Rate Shaping
 - Increased Injection Pressure
 - Multiple Injection

Air System Optimization

- Leveraging higher efficiency aftertreatment to reduce EGR rates
- Focus on turbocharger efficiency at cruise conditions
- Reducing pumping losses by adjusting turbine asymmetry

Compressor Flow

Engine Parasitic Reduction via Downsizing

Cylinder Deactivation

- Cylinder deactivation as a way to increase BMEP
- Measurable BSFC benefit at low loads
- Limiting factors (namely exhaust temperature and airflow) necessitate turbocharger rematch.

- 40% motoring power reduction at cruise RPM
- Higher BMEP at road load

Engine Auxiliary Load and Friction Reduction

Clutched air compressor

Reduced tension oil control rings

Miscellaneous related to pistons, liners, bearings

Low viscosity oil

High Efficiency Aftertreatment

Motivation:

- Reduced EGR rates with turbocharger rematch enable higher thermal efficiency
- Secondary benefit high NOx-PM ratio for DPF passive regeneration

Design Features:

- SCR w/ high efficiency for higher NOx flux design challenges include packaging, backpressure, catalyst material
- Thin wall DPF for backpressure reduction
- Engine thermal management for good aftertreatment temperatures

Neural Network Based Engine Controls

Extensive engine mapping is used in neural network model training

Develop a predictive
 engine controller

- Include a fuel efficiency optimizer
- Integrate predictive vehicle information
- Reduce calibration complexity

Emissions & fuel economy models enable on-board BSFC optimization

Predictive route information (GPS, terrain, traffic, etc.) to leverage the engine controller's ability to optimize the engine in real-time

Neural Network Controller Evaluation

- Evaluated controller on Super Truck routes (20 and 40-minute dynamometer cycles)
- Demonstrated controller's ability to modulate NOx in real-time
- 5% lower BSFC over highway ST cycle
- Similar gains over urban ST cycle

Waste Heat Recovery (WHR)

- Waste heat recovery on a heavy duty truck may become essential to meet long term efficiency goals
- Rankine cycle has the most potential among available
 options
- FE improvement targets in the range of 5 to 10% to make it a viable technology

Waste Heat Sources	Quality	Quantity
Exhaust	High	High
EGR	High	Low
CAC	Low	Low
Coolant	Low	High

WHR Heat Engine – Organic Rankine Cycle (ORC)

WHR Modeling & Testing for System Optimization

- Modeling of ORC at system level for both component sizing and overall system optimization
- Test bed representative of vehicle implementation in development

WHR Power Feedback

ORC Working Fluid Selection

- ORC fluid selection is the primary step other design factors cascade from it
- Ethanol is a good candidate. Other choices include R245fa, water, Novec 649
- Definition of desired ideal ORC fluid and collaboration with chemical industry
- Selection criteria...
 - Thermodynamic efficiency
 - Fluid & system cost
 - GWP, ODP
 - Thermal Stability
 - Toxicity

623

WHR Vehicle Integration

System & component design and efficiency Working fluid choice

Vehicle tradeoffs -

Cooling burden, aero penalty

Optimization and operating parameters

Freight efficiency – Component weight & packaging

Summary

- Engine technologies which translate to over the road freight efficiency improvements are crucial for future customer and regulatory demands
- Freight efficiency improvements require advancements in engine, power train, vehicle, and optimized system integration put together this yields a Super Truck.

Collaboration and Support

Department of Energy Head Quarters

- Gurpreet Singh
- Roland Gravel

National Energy Technology Laboratory

Carl Maronde

Oak Ridge National Laboratory

Waste heat recovery system

Massachusetts Institute of Technology

Low friction technologies

Atkinson LLC

Advanced engine controls

