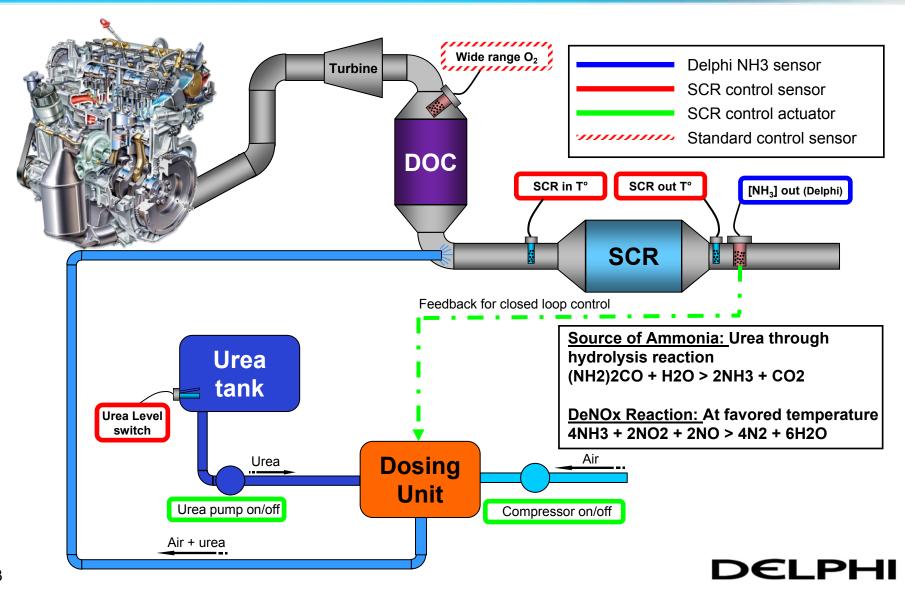


Ammonia Sensor For SCR NOX Reduction

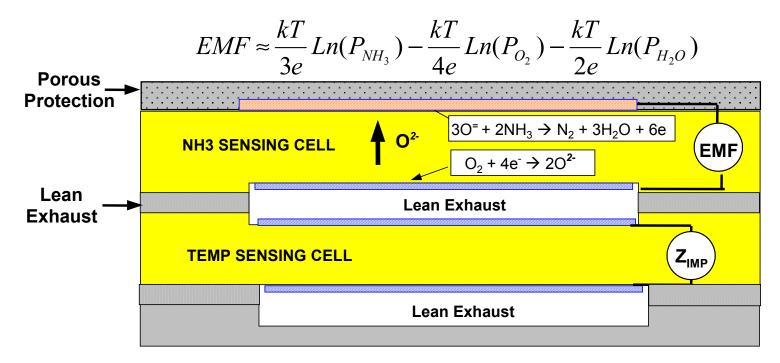
Da Yu Wang, Sheng Yao, David Cabush, Dave Racine

DEER 2007



Agenda

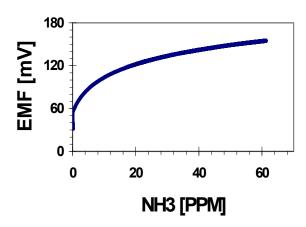
- NH₃ Sensor Usage in SCR system
- Overview NH₃ Sensing Technologies
- Functionality of NH₃ Sensor
- NH₃ Sensor Design
- Test Results
 - Cross Sensitivity
 - Test results
- Close Loop Control of the SCR System with a NH₃ Sensor - System Advantages
- Summary



Diesel SCR System

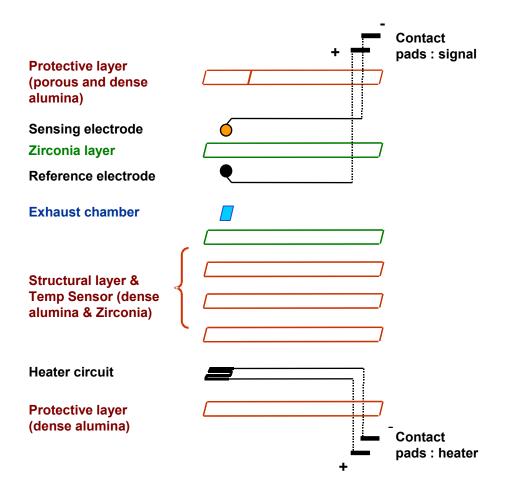
Sensing principle

- Non-equilibrium electrochemical sensing principle
 - Proprietary NH3 sensing electrode materials
 - Both sensing and reference electrodes exposed to the engine exhaust
 - Solid oxide electrolyte used as the sensor body



Theory

Semi-log output of EMF versus NH₃ concentration


$$EMF \approx \frac{kT}{3e} Ln(P_{NH_3}) - \frac{kT}{4e} Ln(P_{O_2}) - \frac{kT}{2e} Ln(P_{H_2O})$$

- Interference effect due to H₂O and O₂ concentrations changing due to combustion can be self-compensating
- The concentration of H₂O and O₂ vary in opposite directions as function of A/F ratio minimizing effect

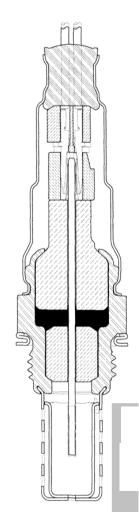
Sensor structure

Planar structure

 Co-fired zirconia and alumina layers with NH3 sensing, platinum reference electrode and heater circuit

Key Features

- Integrated heater provides fast time to activity
- Temperature sensor included
- No air reference
- Alumina layers provide electrical isolation between heater and sensor circuits
- Porous protection provides excellent exhaust poison resistance
- Small size


Sensing Element

- Finished sensing elements
 - Monolithic thick film multi layer composite substrate
 - » Alumina / Zirconia composite
 - » Alumina provides toughness Zirconia electrolyte
 - Integral Heater and Temperature Sensor for heater control
 - Compatible with existing sensor packaging technology
- NH3 electrode material applied on substrate surface
- A poison protective material is applied over the NH3 electrode
- ♦ Finished sensing element looks like exhaust oxygen sensing element

Sensor package

- Based on proven robust production planar sensor packaging
- Package has capability beyond diesel exhaust temperatures
- Lower shielding can be modified according to customer application

NH₃ Sensor System Mechanization

Mechanization

- Early systems being developed for commercial vehicle applications
- Stand-alone electronic interface with CAN link to vehicle
- A-sample hardware shown below.
 - » A-Sample systems provide either Analog or CAN message output

Advanced Development Hardware

NH₃ Sensor Performance Targets

- Measurement range: 0 100ppm NH₃
 - Tolerance: ± 5ppm NH₃ at 10 ppm NH₃.
 - Acceptable gas content without interference: NO, HC, CO, N₂O.
 - Acceptable gas content with cross sensitivity: O₂, H₂O.
- Temperature range:

Functional:
 200 °C to 450 °C

Non functional:
40 °C to 700 °C

Durability target: 5.000hours / 250.000km

NOx Exhaust gas content: 0 to 500ppm (sensor performance within spec)

H2O exhaust gas content: 1% to 8% by mass (sensor performance within spec)

• Response Time: $T_{60} = 3 s$

 $T_{90} = 5 s$

- Thermal Shock
 - Two layers of protection
 - 1. Double layer protective shield
 - 2. System algorithm to disable sensor when liquid water is possible in the exhaust
 - Heated ceramic sensors must be protected from contact with liquid water to prevent damage do to thermal shock

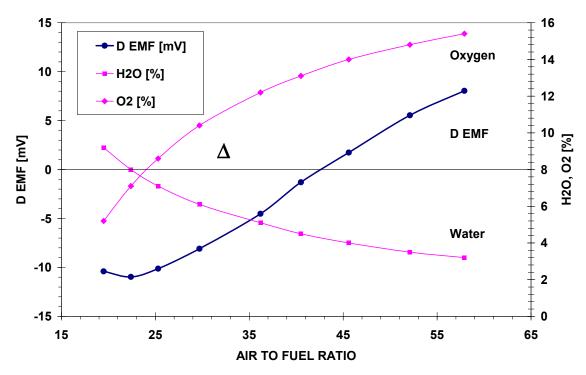
NH₃ Sensor Interface Electronics

Environment

Ambient Temperature (electronics): - 40 °C to 105 °C

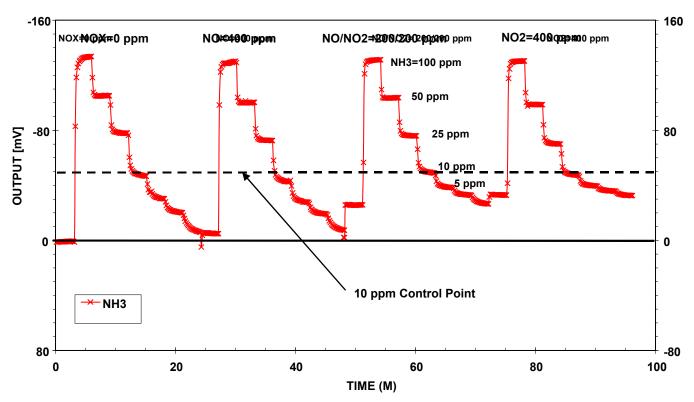
Electrical

- Sensor system compatible with either a 12V or 24V vehicle electrical system
- Sensor system communicates to vehicle over a CAN bus

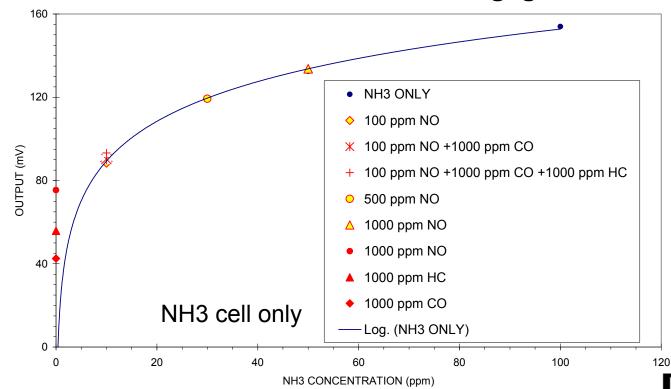

Mounting/Installation

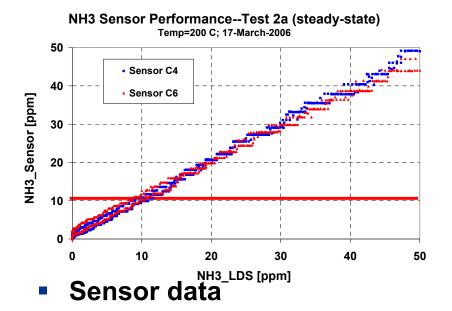
- Sensor mounts directly to exhaust pipe via a M18x1.5 threaded boss
- Sensor must be mounted 10 o above horizontal to prevent pooling of water in shield

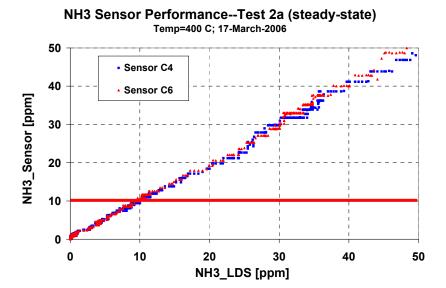
Water and oxygen interference effect


- Water and oxygen have opposite interference effect
- Self compensation effect is possible in a narrow range as shown in following figure (confirmed by lab gas bench too)
- Climate air humidity difference is a main concern but can be handled by calibration
- Model based
 correction is also
 possible if A/F
 ratio and air humidity
 information is available

NH₃ Output in the Presence of NO_X


- Basic function demonstrated in gas bench testing
 - NH₃ signal free from NO_x interference
 - Some interference below 10ppm set point



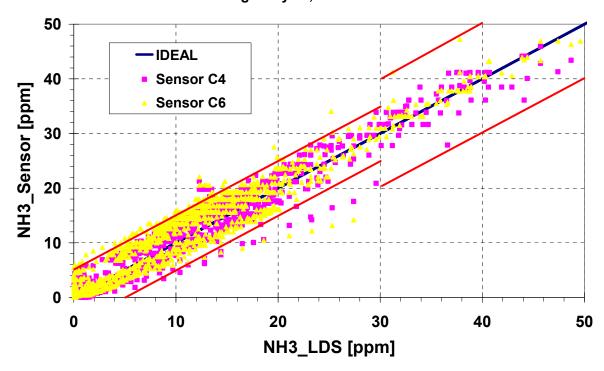

Sensor performance cross interference

- NH₃ sensing accords to the theory prediction (semi-logarithms equation)
 - Data obtained at lab gas bench, 14% O₂, 1.5% H₂O
- Interference from NO, CO, and HC is negligent

Engine Test Stand Performance Steady State Test

- Steady state performance on HD diesel engine
- Test stand fitted with SCR aftertreatment system
- Sensors tested at 200 C & 400 C steady-state exhaust gas conditions
- Ammonia slip between 0 and 50 ppm
- Chart shows sensor output plotted against LDS instrumentation NH3 output signal

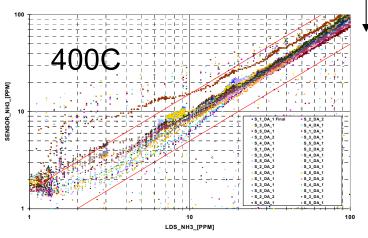
Result

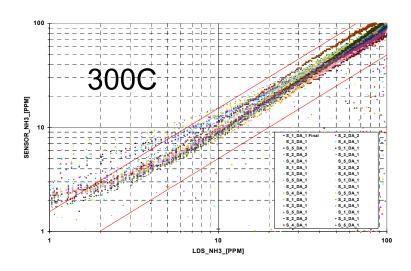

Sensor accuracy within specification limits (+/- 5ppm at 10 ppm control point)

Engine Test Stand Performance ESC Cycle

- NH₃ Sensor output during an ESC cycle on the engine test stand
 - NH₃ sensor output tracks LDS instrumentation over a dynamic test cycle

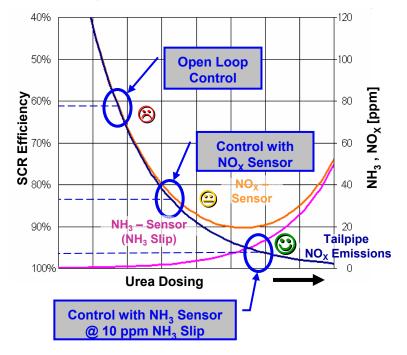
NH3 Sensor Perfromance Test--Test 2b ESC Engine cycle; 17-March-2006





Sample to Sample Variation

- 30 sensors
- Same conversion equation
- No water-oxygen adjustment
- No air humidity adjustment
- Red lines mark ±50% at 10 PPM NH3



Exhaust Ammonia (NH3) Sensor

- Optimized Performance of an SCR Converter

Graphical Representation of Key Factors to SCR Control

- Euro 4 limits can be achieved by using open loop control urea dosing
 - SCR efficiency approximately 65%
- The realization of maximum NOx conversion (without using a post oxidation catalyst) is only possible with closed loop controlled Urea dosing:
 - A NOx based SCR control does not enable the use of the maximum NOx conversion because of NH3 cross sensitivity of NOx sensor.
 - The NH3 based SCR control enables operation at the conversion limit of the catalyst:
 - >90% NOx conversion possible for highwa driving conditions
 - Minimal catalyst volume

Conclusion

- Sensor demonstration has been done
 - NH₃ sensing accords to concept
- Interference with NO, HC, CO is not significant
- O₂ and H₂O have opposite interference effect (minimum compensation through calibration)
- Air humidity and air to fuel ratio information is required for model based correction of the interference effects of O₂ and H₂O (only required if highest accuracy is demanded)
- Response time $T_{60} < 3$ second, $T_{90} < 5$ sec
- Sensors are built on existing Delphi exhaust oxygen sensor technology
- NH₃ Sensor provides an opportunity for improved SCR dosing control and system diagnosis

