

EV Everywhere Grand Challenge

Battery Status and Cost Reduction Prospects

July 26, 2012

David Howell
Team Lead, Hybrid & Electric Systems
Vehicle Technologies Program
U.S. Department of Energy
1000 Independence Avenue
Washington DC 20585

EV Everywhere Battery Targets

Battery affordability and performance are critical advances that are needed in order to achieve the *EV Everywhere* Grand Challenge

Chevy Volt

- ~40 mile electric range
- HEV: 32 mpg /300 miles
- 16 kWh / 120 kW battery
- Battery Cost: ~\$8,000

Nissan Leaf

- ~75 mile electric range
- ≥ 24 kWh / 80 kW battery
- Battery Cost: ~\$12,000

Tesla

- ~ 250 mile electric range
- ≥ 85 kWh / 270 kW battery
- Battery Cost: ~\$35,000

EV Everywhere Target Analysis		Current Status	PHEV40	AEV100	AEV300
Battery Cost	\$/kWh (usable)	< 600	190	300	110
Pack Specific Energy	Wh/kg	80-100	150	180	225
Pack Energy Density	Wh/L	200	250	300	425
SOC Window	%	50	80	90	90

Battery Cost Models

USABC

 Detailed hardware-oriented model for use by DOE/USABC battery developers to cost out specific battery designs with validated cell performance

Argonne (BatPaC)

- Inputs: vehicle architecture, pack capacity & power, cell chemistry, production scale
- Outputs: Optimized cell and electrode design for lowest cost pack
- Enables comparison between materials, electrode designs and thermal management
- Peer reviewed and adopted by EPA. Available on the ANL website.

TIAX

- Cost implications of different battery chemistries for a frozen design
- Identify factors that impact cell pack costs (e.g. active materials costs, electrode design, labor rates, processing speeds)

Key Battery Technical Targets

Battery Technical Targets

Electric drive vehicle battery performance targets are established through detailed Modeling & Simulation and Hardware-In-the-Loop Testing

USDRIVE Energy Storage Targets	PHEV-40	AEV	
Equivalent Electric Range (miles)	40	200-300	
Available Energy (kWh)	11.6	40	
Pack Cost	\$300/kWh (2015)	\$125/kWh (2020)	
Discharge Pulse Power: 10 sec (kW)	38 (Blended) 120 (EREV)	80	
Regen Pulse Power: 10 sec (kW)	25	40	
Calendar Life (year)	15	10+	
Cycle Life (deep cycles)	5000	1,000	
Maximum System Weight (kg)	120	300	
Maximum System Volume (I)	80	133	
Operating Temperature Range (°C)	-30 to +52	-30 to +52	
Cold Crank Power:-30 °C/2sec (kW)	7	N/A	

PHEV Battery Performance & Cost Status

Battery Performance Status

- Data based on current USABC PHEV battery development contracts
- ☐ Focus on high voltage/high capacity cathodes & cell design optimization

PHEV 40 Battery Goals	Targets	Status (2011)	Current (2012)	
Discharge Pulse Power: 10 sec (kW)	38	~95	~70	
Regen Pulse Power: 10 sec (kW)	25	~70	~55	
Available Energy (kWh)	11.6	11.6	11.6	
Calendar Life (year)	10+	10-15	tbd	
Cycle Life (deep cycles)	5,000	5,000+	tbd	
Maximum System Weight (kg)	120	~175	~100-130	
Maximum System Volume (I)	80	~100	~70-80	
System Production Price (@100k units/year)	\$3,400 (\$300/kWh)	~6,850 (\$590+/kWh)	~4200-4800 (\$360-420/kWh)	

EV Battery Performance & Cost Status

Battery Performance Status

- Data based on initial USABC EV battery development contracts started in 2011
- ☐ Focus on high voltage/high capacity cathodes & EV cell design optimization

AEV Battery Goals	Targets	Current	
Equivalent Electric Range, miles	200-300	✓	
Discharge Pulse Power (10 sec), kW	80-120	✓	
Regenerative Pulse Power (10 sec), kW	40	✓	
Available Energy, kWh	40-60	✓	
Recharge Rate, kW	Level 2	TBD	
Calendar Life, years	10+	TBD	
Cycle Life, cycles	1,000 deep cycles	500-1000	
Operating Temperature Range, °C	-40 to 60	0 to 40	
System Weight, kg	160-240	270-350	
System Volume, liters	80-120	170-225	
Production Cost (@100,000 units/year)	\$125/kWh	\$325-500	

PHEV Cost Estimates, \$/kWh

- Estimates from ANL's BatPaC model.
- Based on 2020 production year & annual production of 100k packs
- Chemistry
 - · graphite anode
 - NMC441 cathode
 - EC-EMC-LiPF₆ electrolyte
- Liquid cooling
- Manufacturing
 - · electrode processing,
 - · cell assembly
 - formation,
 - module & pack assembly
- Purchased items
 - cell terminals
 - packaging
 - module and pack jackets

EV Cost Estimates, \$/kWh

- Estimates from ANL's BatPaC model.
- Based on 2020 production year & annual production of 100k packs
- Chemistry
 - · graphite anode
 - NMC441 cathode
 - EC-EMC-LiPF₆ electrolyte
- Liquid cooling
- Manufacturing
 - · electrode processing,
 - · cell assembly
 - · formation.
 - module & pack assembly
- Purchased items
 - cell terminals
 - · packaging
 - module and pack jackets

Cost of Key Materials, \$/kWh

Non-active materials costs are higher for higher power systems. Material costs for other systems are similar, non-active material costs decrease on a relative basis with increasing AER.

Path Forward for Lithium-Based Batteries

Battery Cost Model Calculations (BatPaC v1.0) for a 100 mile range Electric Vehicle (EV100)

- Battery Specs: 30 kWh, 80 kW, 360V
- Total cost to OFM includes purchased battery, battery management system, and liquid thermal management (w/o electric compressor).
- If high-risk research is successful, material advances may lead to a 60% reduction in cost and 250% increase in energy density
- Larger batteries (EV200+) will have higher energy densities and lower costs for energy.

Cost reduction

- Higher energy materials will reduce the cost of batteries.
- However, there are other approaches being pursued that will result in reduced cost. These include:
 - Reduce the production cost of electrolyte, cathode, and anode materials
 - Thicker electrode coatings = less separator, less current collector
 - Thinner and/or reduced cost current collectors and separators
 - Faster and less expensive coating, drying, forming technology
 - Advanced thermal management technology
 - Advanced pack design with reduced non-active material use

Electrode manufacturing and cell fabrication are 25% of battery cost.

Breakthrough Needed?

- High-speed deposition
- UV, Microwave, or IR flash lamp drying
- Ultrahigh packing density
- In situ separator coatings

Currently: A 2-4 week process that assures performance, life, & safety of a cell

Breakthrough Needed?

- Form SEI layer during material mixing or electrode processing
- High speed In-Situ NDI techniques to detect flaws & internal shorts

Key Observations

- Current high volume EDV lithium-ion battery cost estimates are less than \$600/kWh of useable energy.
 - Advanced lithium ion technologies project costs approaching \$300/kWh of useable energy. Development and validation are underway.
 - Models project that lithium-ion battery costs of less than \$200/kWh of useable energy are plausible.
- Electrochemistry optimization matters
 - Key materials represent 45-75% of total battery pack cost
 - Useable State-of-Charge range has direct impact on cost
 - Capacity fade can dramatically influence total cost of the battery pack
- Cell and Pack design matters
 - Cell power & energy density, thermal performance, and durability have a significant impact on pack cost
- Manufacturing scale matters
 - Increasing production rate from 10,000 to 100,000 batteries/year reduces cost by ~30-40% (Gioia 2009, Nelson 2009)
 - Increased processing speed (2X) can compete with very low labor rates (TIAX)

Current & Future Technologies

Potential Attributes of Battery Technologies (Battery Pack level)

	Specific Energy (Wh/kg)	Energy Density (Wh/I)	Power (W/kg)	Current Life (cycles)	Safety
Lithium-ion (current status)	50-80	100-150	500-1000	>5,000	Meets SAE J2929
Lithium-ion (future generations)	150-200	250	2,000	tbd	tbd
Lithium metal polymer	150-200	250-300	500	~1000	+++++
Lithium metal / Sulfur	250-400	180-250	750	~100	Concern
Lithium metal / Air	400-800	180-250	Poor	~10	Concern

For Additional Information...

QUESTIONS?

Dave Howell, Team Lead, Hybrid and Electric Systems 202-586-3148

David.Howell@ee.doe.gov