

Materials Compatibility

Brian Somerday Sandia National Laboratories May 22, 2009

Project ID # scs_03_somerday

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

Overview

Timeline

- Project start date Oct. 2003
- Project end date Sept. 2015
- Percent complete 50%

Budget

- Total project funding (to date)
 - DOE share: \$3.8M
- FY08 Funding: \$1.1M
- FY09 Funding: \$0.9M (* R&D core, no IEA contracts)

Barriers & Targets

- Barriers and targets addressed
 - Materials reference guide for design and installation
 - Hydrogen storage tank standards for portable, stationary and vehicular use
 - Insufficient technical data to revise standards

Partners

- Interactions/Collaborations:
 - ASME, CSA, ISO
 - Swagelok, Fibatech
 - DOE Pipeline Working Group
 - HYDROGENIUS (AIST/Kyushu University, Japan)

Objectives

- Enable development and implementation of codes and standards for H₂ containment components
 - Evaluate data on mechanical properties of materials in H₂ gas
 - "Technical Reference on Hydrogen Compatibility of Materials"
 - Generate new benchmark data on high-priority materials
 - Pressure vessel steels, stainless steels
 - Establish procedures for reliable materials testing
 - Sustained-load cracking, fatigue crack propagation
- Participate directly in standards development
 - Structural design standards
 - ASME Article KD-10
 - Materials testing standards
 - Automotive components

Milestones

- Add/update chapters on stainless steels and precipitationstrengthened aluminum alloys in Technical Reference (FY08 Q4 and FY09 Q1; complete)
- Complete cracking threshold measurements on Ni-Cr-Mo pressure vessel steel (FY08 Q3; complete)
- Complete fatigue crack growth measurements on Ni-Cr-Mo vessel steel (FY08 Q4; in progress, expected FY09 Q3)
- Evaluate specimen designs for cracking threshold measurements of ferritic steels (FY09 Q2; complete)
- Compare fatigue crack growth data for stainless steels tested in H₂ gas vs H-precharged condition (FY09 Q2; in progress, expected FY09 Q4)
- Compare cracking threshold to fracture toughness measurements for vessel steels (FY09 Q3; complete)

Approach

- Applied research
 - Conduct materials testing to address voids in data base
 - Emphasize high H₂ gas pressures (>100 MPa)
 - Apply test methods in ASME Article KD-10 (i.e., fracture mechanics)
 - Prioritize hydrogen-assisted fatigue crack growth
 - Critically review data to assess test methods
 - Ensure laboratory testing reveals material response for component
 - Evaluate variables that affect materials test methods
- Standards development activities
 - Provide feedback on ASME Article KD-10 based on results from materials testing
 - Develop ideas for materials testing standards applied to automotive components

Technical Reference for Hydrogen Compatibility of Materials

- Additional/updated chapters in FY08-FY09
 - "Stabilized" austenitic stainless steels (i.e., 321 and 347)
 - Duplex stainless steels (updated with Sandia data)
 - Precipitation-strengthened aluminum (2xxx and 7xxx)
- Future chapters
 - Nickel alloys
 - Update chapters on ferritic steels with Sandia data
- www.ca.sandia.gov/matlsTechRef

Stakeholders (industry, SDOs, etc.) provide input on priority materials and receive completed products

Measurement of thresholds (K_{TH}) for Ni-Cr-Mo steels completed

- K_{TH} measurements required in ASME Article KD-10
- Lower-strength variation of SA372 Gr. L may be attractive for thick-walled H₂ pressure vessels

Unexpected K_{TH} trend may be influenced by specimen features

 K_{TH} values must represent reliable lower bounds to ensure safe design of H_2 containment vessels

Modified specimen may yield lower K_{TH} values

From: Anderson, T.L. 2005, *Fracture Mechanics*, 3rd edition, Taylor and Francis p.379

Two test methods compared: "crack arrest" vs "crack initiation"

- Materials testing prescribed in ASME Article KD-10 (i.e., K_{TH} measurements) appears non-conservative
- Results will be presented to ASME Project Team on Hydrogen Tanks

Fatigue crack growth measurements on vessel steel

Industry partner using fatigue data to design H_2 pressure vessel according to ASME Article KD-10

Fatigue crack growth measurements on stainless steel

Fatigue Crack Growth of Strain-Hardened 316 SS

Materials testing standards must address effect of load cycle frequency on fatigue cracking rates

Future Work

Remainder of FY09

- Add/update Technical Reference chapters on nickel-based alloys and ferritic steels (Q3 and Q4 milestones)
- Evaluate the effects of load cycle frequency on fatigue crack growth rate of ferritic steels in H₂ gas (Q3 milestone)
- Compare fatigue crack growth data for stainless steels tested in H₂ gas vs H-precharged condition (Q2 milestone in progress)
- Develop reliable methods for measuring fracture response of aluminum alloys in H₂ gas (Q4 milestone)
- Engage domestic and international stakeholders to develop standards for pressure manifold components (i.e., fittings, regulators, etc.)

FY10

- Update Technical Reference chapters with Sandia data
- Evaluate effects of load cycle wave form on fatigue testing in H_2 gas
- Develop high- and low-cycle fatigue test methods for manifold component materials in H₂ gas

Summary

- Completed measurement of cracking thresholds (K_{TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H₂ gas
 K_{TH} measurements required in ASME Article KD-10
- "Crack arrest" test methods appear to yield non-conservative results compared to "crack initiation" test methods
 - Proposal to insert "crack initiation" test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks
 - "Crack initiation" methods require test apparatus designed for dynamic loading of specimens in H₂ gas
- Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H₂ gas
 - Fatigue crack growth data in H₂ required in ASME Article KD-10
 - Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H₂ gas

