Non-rare earth magnetic materials

Michael A. McGuire

Oak Ridge National Laboratory 5/14/2013 PM045

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date Oct. 2009
- Project end date Sept. 2015
- Percent complete 57 %

Budget

- Total project funding (FY09-12) \$1314K
- Funding received in FY12 \$360K
- Funding for FY13 \$234K (est.)

Targets / Barriers

- Relevant Targets
 - lowering the cost of electrical propulsion systems toward
 - 2015 (2020) target of 12 (8) \$/kW

Relevant Barriers

- **Limited domestic supply:** rare-earth elements.
- Cost: high-performance permanent magnet materials.

Collaborations

- ORNL: computation, processing
- Univ. Tenn.: characterization
- Georgia Tech Research Institute: characterization

Relevance: the problem

- Permanent magnet (PM) motors are key for state-of-the-art electric motors for propulsion.
- Magnets account for:
 - 40% of current motor materials cost.
 - 30% of current motor cost.
 - 60% of 2020 target motor cost.
- Reducing magnet cost is critical to meeting targets with internal PM motors.
- Available high-performance magnets contain *rare-earth elements*, which are expensive and subject to supply chain disruptions.

Relevance: project objectives

The overall goal of this project is to identify alternative hard ferromagnetic materials which do not contain rare-earth elements and are relevant to PM motor technology.

- Objectives of this project:
 - Identify new materials in chemical systems which contain elements with the most promise for good PM properties.
 - Examine known materials worth further study.
 - Understand the usefulness of heavy transition metals for magnetic anisotropy.
- **Relevance** to VT program:
 - The availability of alternative PM materials, especially those without rareearth elements, may enable progress toward cost targets for motors.

Approach: magnetic performance

Parameters characterizing magnetic performance:

- Remanent magnetization (M_r)
- Coercive field (H_c)
- Energy product (BH)
- Curie temperature (T_C)

Approach: methodology

This project addresses the **technical barrier of cost and availability of rare-earth elements** by focusing on **rare-earth free chemical systems**.

Uniqueness: Utilize **heavy transition metals** instead of rare-earth elements to provide anisotropy. **Focus on new PM materials.**

Target non-cubic crystal structures rich in 3*d* transition metals (strong magnetism), with heavier transition metals (strong spin-orbit coupling), as well as light "interstitials" elements (complex/new materials).

Approach: milestones

Month/Year	Milestone		
September 2012	Milestone: Determine usefulness of metal flux synthesis technique for producing crystals of new ternary phosphides with high transition metal concentrations. Complete: Small crystals or many complex phases produced. Continue with technique.		
September 2012	 Milestone: Develop capabilities to produce sub-nitrides using flowing ammonia gas, and examine effects of mild nitriding conditions on magnetic intermetallic compounds. Complete: Poor reactivity of metals with nitrogen and poor thermal stability of products prevented significant progress. This route toward new magnets was determined to be inappropriate for this project. 		
September 2013	Milestone: Identify new ferromagnetic phosphides using metal-flux crystal growth and conventional synthesis methods, and assess their potential for PM applications.Progress: Exploratory crystal growth experiments ongoing.		
September 2013	Milestone: Apply high magnetic field processing capabilities available at ORNL to stabilize ferromagnetic phases in rare-earth-free chemical systems. Progress: Initial experiments have demonstrated stability enhancement induced by high magnetic fields.		

Progress

- New ferromagnets: ZrFe_{12-x}Al_x and HfFe_{12-x}Al_x
 FY11-12
- Stabilizing L1₀ magnetic phases: FePd_{1-x}Ni_x
 FY13
- Promising new permanent magnet system: Hf₂Co₁₁B FY10-13

Progress: $AFe_{12-x}AI_x$ (A = Zr, Hf)

- Discovered new Fe-Al based ferromagnets
- Synthesized materials with varying AI contents
- Characterized crystallographic, magnetic, and microstructural properties

Scanning electron micrograph of HfFe₆Al₆

Progress: $AFe_{12-x}AI_x$ (A = Zr, Hf)

- Discovered new Fe-Al based ferromagnets
- Synthesized materials with varying AI contents
- Characterized crystallographic, magnetic, and microstructural properties
- Understood experimental data using results of first principles calculations
 - Remanent magnetization may be due to magnetic moments on Zr/Hf.
 - Antiferromagnetic interactions among certain Fe sites suppresses ferromagnetism at high Fe contents

composition	T _C	$\mathbf{M}_{\mathbf{S}}$	M _r
	(K)	(μ_B / Fe)	(µ _B / Fe)
ZrFe ₅ Al ₇	271	1.46	0.15
ZrFe _{5.5} Al _{6.5}	233	1.37	0.6
ZrFe ₆ Al ₆	170-190	0.96	0.3
HfFe ₅ Al ₇	263	1.39	0.13
HfFe _{5.5} Al _{6.5}	230	1.32	0.39
HfFe ₆ Al ₆	180-195	0.96	0.44

• Reported findings: J. Appl. Phys. **111**, 093918 (2012).

Progress

- New ferromagnets: ZrFe_{12-x}Al_x and HfFe_{12-x}Al_x
 FY11-12
- Stabilizing L1₀ magnetic phases: FePd_{1-x}Ni_x
 FY13
- Promising new permanent magnet system: Hf₂Co₁₁B FY10-13

magnetic field processing to stabilize $L1_0$ phase.

Progress: stabilizing L1₀ compounds

Produced L1₀ FePd_{1-x}Ni_x for low Ni concentrations.

- Cast alloys for **thermomagnetic processing**
- Performed preliminary processing experiments
- Observed magnetic-field-induced increase in stability of the L1₀ phase.

Thermo-magnetic processing: $L1_0$ phase stabilized by field

13

Progress

- New ferromagnets: ZrFe_{12-x}Al_x and HfFe_{12-x}Al_x
 FY11-12
- Stabilizing L1₀ magnetic phases: FePd_{1-x}Ni_x
 FY13
- Promising new permanent magnet system: Hf₂Co₁₁B FY10-13

Progress: Hf₂Co₁₁B

Hf₂Co₁₁B: melt-spun ribbons and magnetic properties

Continuing study of Hf-Co-B alloys.

- Progress in FY2012-2013
 - Demonstrated BH_{max} = 6.7 MGOe
 - Correlated microstructure and magnetism
 - Filed Provisional Patent Application

Key findings:

- Energy product competitive with well-established, long-studied nonrare earth magnet materials.
- Energy product near half that obtained in optimized NdFeB meltspun ribbons.
- Curie temperature ~150°C higher than NdFeB.
- Cost can be reduced by partial Hf → Zr, impact on performance currently under study.

Progress: Hf₂Co₁₁B

Magnetism and microstructure

Collaborations

- David Singh, Materials Theory, Oak Ridge National Lab
 - First principle calculations
- Orlando Rios, Materials Processing, Oak Ridge National Lab
 - Magnetic field processing and microstructure analysis
- Nirmal Ghimire and David Mandrus, University of Tennessee
 - Sample synthesis and characterization
- Michael Koehler, University of Tennessee
 - High temperature magnetic measurements
- John Schultz, Georgia Tech Research Institute
 - High frequency magnetic measurements

Proposed Future Work: FY13-14

• Hf₂Co₁₁B

- Continue optimizing processing conditions, melt-spinning, crystallization.
- Chemical modifications for cost and performance (Zr substitution for Hf, Fe for Co, optimal B content \rightarrow Hf_{2-x}Zr_xCo_{11-y}Fe_yB_z).

• L1₀ phases

- Synthesize $\text{FePd}_{1-x}\text{Ni}_x$ alloys for x = 0.1,0.2...0.9, 1.0.
- Characterize magnetic properties: magnetization, curie temperatures.
- Explore thermomagnetic processing to stabilize the $L1_0$ structure.
- New transition metal rich phosphides
 - Continue exploratory syntheses in ternary Cr/Mn/Fe/Co-rich phosphide systems.
 - Tune crystal growth conditions (solvent compositions) to favor products with high concentrations of metals.
 - Complement with arc-melting when appropriate (e.g. Fe-phosphides).

Summary

- **Relevance**: Discovery and development of alternative permanent magnet materials addresses the cost and limited domestic supply of rare-earth elements, which are barriers to meeting motor cost targets.
- **Approach**: Focus on new materials discovery and characterization supported by computation, to identify and understand new candidate materials. Combine heavy and light transition metals.
- Accomplishments and Progress:
 - Discovered and characterized new rare-earth free Fe-based ferromagnets
 AFe_{12-x}Al_x, and understood performance limits using first principles calculations.
 - Processed FePd_{1-x}Ni_x alloys in high magnetic fields and showed increased stability of the anisotropic magnetic phase and improved kinetics for phase transformation.
 - Demonstrated Hf-Co-B alloys to be competitive rare-earth free permanent magnet materials with high Curie temperature (500 °C), energy products near 7 MGOe, and expectations of further improvement.
- **Collaborations**: Materials theory, processing, and microstructure studies at ORNL, synthesis and characterization at Univ. Tenn., characterization at GTRI.
- Proposed Future Work: Improving Hf₂Co₁₁B-based alloys by chemical modification, exploration of Cr/Mn/Fe/Co-rich phosphides for new ferromagnets.

Technical Back-Up Slides

Hf₂Co₁₁B x-ray diffraction

Hf₂Co₁₁B differential thermal analysis

22