
U.S. Battery R&D Progress and Plans

May 14, 2013

David Howell, Team Leader Hybrid & Electric Vehicles R&D Vehicle Technologies Office U.S. Department of Energy 1000 Independence Avenue Washington DC 20585

Battery R&D Objectives

Advance the development of batteries to enable a large market penetration of hybrid and electric vehicles.

Program targets focus on enabling market success (increase performance at lower cost while meeting weight, volume & safety).

Year	Electric Vehicle	Total Light Duty	
	HEV	PHEV & EV	Vehicle Sales
2009	290,273	_	10,409,897
2010	274,648	345	11,590,274
2011	266,501	17,763	12,778,885
2012	434,648	53,169	14,492,398

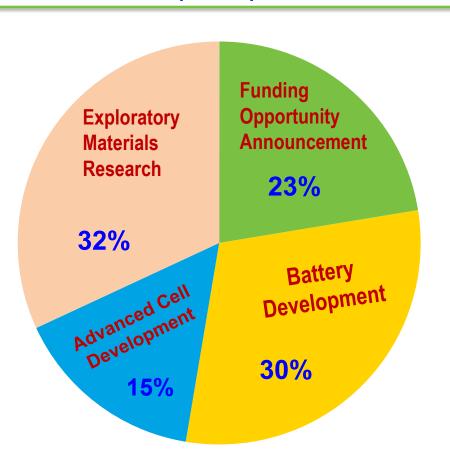
A Track Record of Success

DOE R&D has brought NiMH and Li-ion batteries into the automotive market

- Nickelate technology (JCI): BMW, Mercedes.
- ☐ Manganese technology (LG Chem, MI): GM Volt & Ford Focus EV.
- ☐ Iron phosphate technology (A123Systems): Fisker, GM Spark.

Battery R&D Budget

Battery/Energy Storage R&D Funding (\$, M)


FY 2012*	\$90
FY 2013**	\$88
FY 2014*** (request)	\$170.5

*FY 2012 SBIR/STTR removed.

**FY 2013 full year CR inclusive of SBIR/STTR.

*** FY 2014 budget request inclusive of SBIR/STTR.

FY 2013 Energy Storage R&D Budget** (\$88M)

VTO Battery R&D Activities

Advanced Battery Materials Research

Capacity Improvement √ Failure Mitigation

Cell Design & Electrochemistry **Optimization**

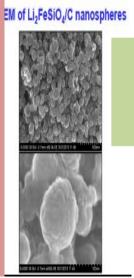
- ✓ Power & Capacity Increase
 - Life Improvement

2 – Electrode and **Cell Fabrication**

Performance

& Aging

Advanced Battery Development


- ✓ Performance Optimization
 - Cost Reduction

Battery Materials

Advanced Anodes (600 mAh/g)

Advanced cathodes (300 +mAh/g)

Next Generation Electrolytes (5 volt)

1 – Advanced Electrochemical **Cell Targets** Couple 400Wh/kg Research 600Wh/l **5.000** cycles 4 – Scientific Diagnostics and Analysis

0.5 - 1.0 Ah cells

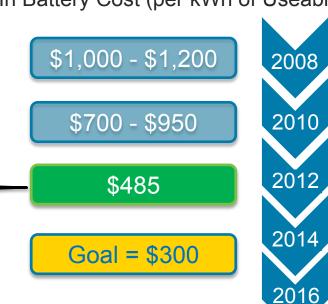
\$125/kWh 250 Wh/kg 400 Wh/l $2,000 \, \text{W/kg}$

5 - 40+ Ah cells

10-100 mAh cells

Battery R&D Progress

2018


2020

2022

- ☐ Current cost estimates (for a PHEV battery) average \$485/kWh of useable energy.
- Cost projections are derived by the manufacturer using the USABC's battery manufacturing cost model
 - For a production volume of 100,000 batteries per year.
 - For battery cell and module designs that meet DOE/USABC system performance targets.
 - Validated using established test procedures.
- □ Proprietary details of the designs and the cost models are presented at Quarterly Progress Reviews.

Progress of Battery Development Projects

Plug-In Battery Cost (per kWh of Useable Energy)

Goal = \$125

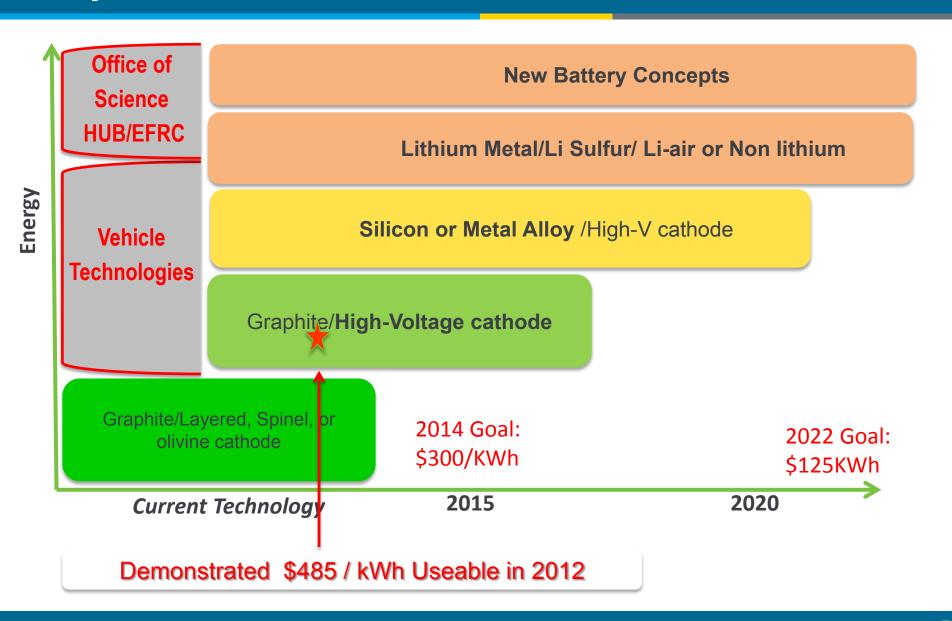
EV Everywhere Battery Targets

Battery Technology Comparison

4X Cost Reduction

2X Size Reduction

>2X Weight Reduction


2022

\$/kWh: 125 Wh/kg: 250 Wh/l: 400 W/kg: 2,000

Wh/l: <200 W/kg: 400

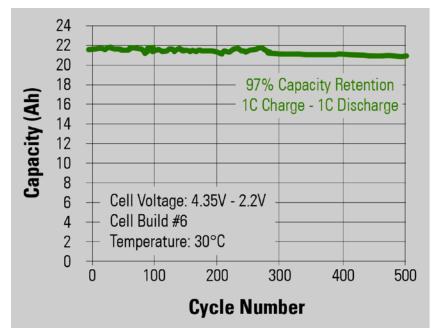
Research Roadmap for 2015 & Beyond

Current Results

Demonstrated Attributes of Battery Technologies

		Battery Performance (Pack Level)				
	Maturity	Specific Energy (Wh/kg)	Energy Density (Wh/l)	Power (W/kg)	Current Life (cycles)	Abuse Tolerance
Lithium-ion (current status)	Pack	50-80	100-150	500- 750	>5,000	Meets SAE J2929
Lithium-ion (future generations)	Cell 20Ah+	155	205	800	~500+	TBD
Lithium metal polymer (solid)	Cell 10Ah+	150	250	<100	~1,000	+ flammability - volatility
Lithium metal / Sulfur	Cell (Lab)	250-400	180-250	<100	~100	Concern
Lithium metal / Air	Lab Devices	400- 600(?)	200(?)	Poor	?	Concern

Envia Systems



High Energy Lithium-ion Batteries for EVs

Accomplishments:

- ☐ USABC EV battery development project
 - Pack Level Gravimetric energy density (155 Wh/kg).
 - Pack Level Volumetric energy density (205 Wh/l).
 - Power density exceeds USABC targets.
- ☐ High confidence in meeting the cycle life target of 1,000 cycles.
 - Showing 97% capacity retention after 500 cycles.
- □ Demonstrated that cells can operate over a wide temperature window
 - -40 C to 50 C

Cycle life of 22 Ah pouch cells

Envia 22-Ah pouch cell

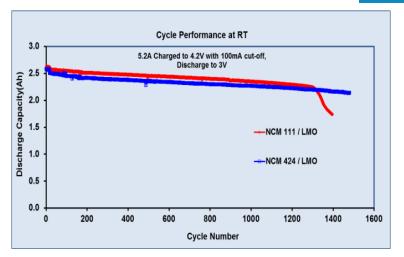
Johnson Controls, Inc

Manufacturing Cost Reduction in Lithium-ion Batteries

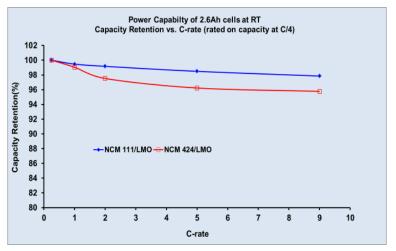
Accomplishments:

- Demonstrated novel cathode slurry processing techniques (paste mixing & dry compounding)
 - N-Methylpyrrolidone (NMP) plays an active role in reactions, i.e. polymerization—high cap-ex and recovery costs.
 - Reduced NMP solvent use by 32%.
 - Increased coated electrode density by 31%.
- ☐ On path to increase cell energy density by 36%.
 - from 275 Wh/L to 375 Wh/L.
- On a path to reduce cell costs by 40%
 - from \$420/kWh to \$250/kWh.

Trial Results					
	Solvent Used	Slurry Density	Electrode Density		
Baseline	Standard	Standard	Standard		
Powder Compounding	-31.9%	+22.9%	+31.4%		
Paste Mixing	-24.3%	+14.5%	+15.2%		


Slurry & electrode density improvement as a function of the processing approach

Scale-Up/Production: Low-Cost Ni/Mn/Co Cathode Material

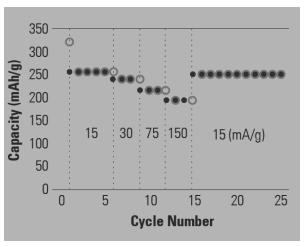


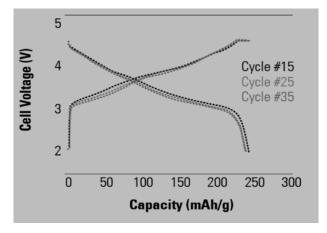
Accomplishments:

- □ Key materials account for 45-70% of total PEV pack cost.
 - The cathode accounts for 30% of key materials cost
- □ VTO supported BASF to lower NCM cathode cost through precursor improvements & process modifications.
- □ NCM 111, 523, and 424 in production
 - NCM 424 (LiNi_{0.4}Co_{0.2}Mn_{0.4}O₂) with 40% less cobalt (vs. standard NMC) yields lower cost (~15% reduction).
- ☐ High-Energy HE-NCM in R&D stage (260 mAh/g)
 - \$4.8/kWh vs. \$11.6/kWh (NMC): a potential 60% reduction in material production cost.

Cycle life of NMC424/LMO blend comparable to NMC111/LMO

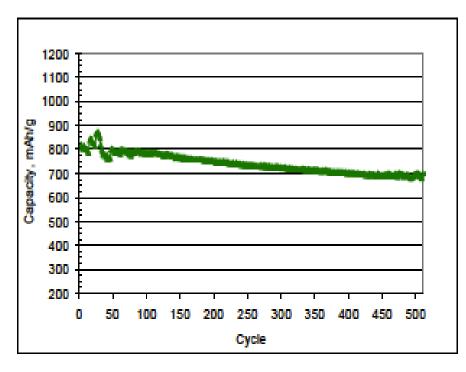
High rate capability of NMC424/LMO


Argonne National Laboratory


A New Synthesis Approach to Mn-rich Cathodes

- □ 0.5Li₂MnO₃ 0.5 LiMn_{0.5}Ni_{0.5}O₂ cathode shows high capacities of ~250 mAh/g at low rates, and ~200 mAh/g at ~1C rate.
 - synthesized via a Li₂MnO₃
 precursor
- ☐ The voltage profiles quickly stabilize with respect to the initial 10 cycles.
- ☐ This material displays good stability and capacity retention over extended cycling to high voltage.

Rate data of a Li_2MnO_3 -based $0.5Li_2MnO_3$ - $0.5LiMn_{0.5}Ni_{0.5}O_2$ Cathode.

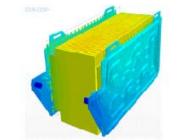

Stability of voltage profiles (at 15 mAh/g).

NanoSys

High-capacity Graphite/Silicon Anodes

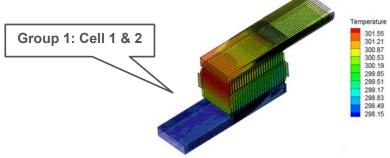
- Nanosys is developing a graphite/Si composite anode material (SiNANOde™)
- SiNANOde™ target capacity is 700~1,000 mAh/g, and >800 cycles.
- Approach: Improve stability and SEI formation through an innovative surface modification of the Si nanowire anode coupled with an optimized electrolyte and binder chemistry.
- □ Demonstrated 850mAh/g of reversible capacity for SiNANOde
- □ Demostrated cycle life of ~500 cycles at 83% capacity retention at 0.3C cycling in half cells.

500 cycles of Si half-cell using NanoSys SiNANode meterial.


ENERGY Energy Efficiency & Renewable Energy

Computer Aided Engineering

STAR-CCM+



Example module using 42 cells (Courtesy: Automotive Simulation Centre, Stuttgart, Germany).

Thermal contours at t=500 seconds under cold-start discharge.

sensor system for detecting & pre-empting short circuits inside a Li-ion cell.

33 Ah Cylindrical cell
12 W Internal short
Runaway in ~120 min
Runaway in ~130 min

Simulations results (from a validated FEA model) showing the effect of the cell format on thermal runaway following an internal short.

Recovery Act: Battery Manufacturing

Cell & Pack Production

Electrode throughput

5.4M kwh per year

Cell Assembly

~250,000 (10 kWh packs) per year

EV Packs 100,000+ packs per year

On Going

- Johnson Controls: cell production and pack assembly at in Holland, MI
- ☐ General Motors: battery pack assembly at Brownstown, MI
- ☐ LG Chem: cell & pack capability in Holland, MI
- **SAFT**: cell production at Jacksonville, FL

Completed

- A123Systems: cell production & pack assembly in Livonia & Romulus, MI
- **EnerDel**: cell production & pack assembly at Fishers & Mt Comfort, IN
- Dow Kokam: cell production & pack assembly capability in Midland, MI
- **Exide:** advanced lead acid battery production established in Columbus, GA
- **East Penn:** advanced lead acid battery production established in PA

GM Battery Pack Assist

East Penn: Injection Molding

LG Chem Michigan Mixing Tower

Recovery Act: Battery Manufacturing

Materials **Production**

- TODA: cathode production
- Rockwood Lithium (formerly Chemetall Foote): lithium hydroxide production
- ☐ HTTM: cell hardware production
- BASF-Novolyte: electrolyte equip installd
- Toxco: Recycling facility constructn comp
- On Going
- Completed
- BASF: cathode production
- EnerG2: anode production
- FutureFuel: anode production
- Pyrotek: anode production
- Celgard: separator production
- Entek: separator production
- Honeywell: Li-salt pilot plant operational

Celgard Separator Roll

EnerG2 Freeze Dry Process

Rockwood lithium hydroxide production

VTO FY2013 FOA

FY13 Vehicle Technologies Office Wide FOA: \$17.0M DOE \$1.0M TARDEC

- ☐ Improvements in Cell Chemistry, Composition, and Processing
 - Focus on the development of high energy Li-ion couples that can meet the cell performance and life targets: 400-600 wh/l, 1200-1600 w/l, 1000-5000 cycles, etc...
- ☐ Computer Aided Engineering for Electric Drive Batteries
 - Dramatically improving the computation efficiency of current CAE Tools, or developing models capable of predicting the combined structural, electrical, and thermal responses to abusive conditions, and/or improving the accuracy of advanced life prediction
- □ Advanced Electrolytes for Next-Generation Lithium Ion Chemistries
 - Advanced electrolytes that can enable the commercialization of next generation lithium ion technologies including silicon, tin or other high-energy alloy anodes and high voltage and high capacity cathodes, such as the 5 Volt Ni/Mn spinel or the Li-rich layered/layered transition metal oxides.

FY2014 Potential Funding Opportunities

☐ SBIR

Subject to Federal Budget Appropriations

,	
☐ Advanced Battery Development (Cooperative Agreement)	
☐ RFPI on High Energy Battery Development	
☐ Incubator (Start-Up: "On-Ramping Off-Roadmap Technolog	gies")
□ VTO Program Wide FOA	
☐ Beyond Lithium Ion	
☐ Materials Processing and Production Improvements	
☐ BATT (Solid Electrolytes: Exploratory Materials)	

For Additional Information...

QUESTIONS?

Dave Howell, Team Lead, Hybrid and Electric Systems 202-586-3148
David.Howell@ee.doe.gov