

... for a brighter future

Project ID # vss_10_rousseau

2009 DOE Hydrogen Program and Vehicle Technologies
Annual Merit Review

May 19, 2009

Phil Sharer, Aymeric Rousseau

Argonne National Laboratory

Sponsored by Lee Slezak

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Start July 2008
- End September 2009
- 75% Complete

Budget

- DOE
 - FY08 \$ 200k
 - FY09 \$ 400k

Barriers

- Set targets for the different technical teams
- Perform cost benefit analysis

Partners

- U.S. EPA
- ANL Battery's group

Main Objectives

- Define targets for the different technical teams.
- How does each assumption influence the component requirements?
- Can we lower a component requirement without significant fuel economy loss?
- What are the most appropriate battery energy/power to maximize fuel displacement?
- What is the best control strategy philosophy for different battery characteristics?
- What should the cost targets be to have specific payback?

Milestones

Implement RWDC

Define Assumptions (performance, cost)

Define Vehicles

Develop Analysis

Methodology

Run Simulations

Analyze Fuel Efficiency

Perform Cost Benefit

Write report

Approach

Battery Power and Usable Energy Requirement as a Function of Vehicle Mass

Engine Power Requirements Provided to the Engine Tech. Team

Engine Power per vehicle classes

Engine Power per vehicle configuration

Different PHEV Powertrains and Battery Sizes

Kernel Density Used to Compare Options

Distribution Fuel Consumption Conventional Vehicle

One Control per Configuration was Selected Based on a Fuel Economy and Number of Engine Starts - Criteria Mean Values

Fuel Consumption Lowers with Increasing Battery Energy

Battery Usage Linked to Usable Energy -> Different Impact on Life for Different Energies

4kWh Battery Energy Provides 50% of the Gains Achieved with 16 kWh Battery

Used Battery Energy as a Function of Driving Distance

Constant Payback Period Requires Longer Driving Distances for Bigger Battery Packs

Equation for break even lines with conventional vehicle:

$$t_{breakeven} = \frac{C_{Veh2} - C_{Veh1}}{C_{fuel} * \left[Cons_{fuel,Veh1}(d) - Cons_{fuel,Veh2}(d) \right] + C_{elec} * \left[Cons_{elec,Veh1}(d) - Cons_{elec,Veh2}(d) \right]}$$

The further you drive, the better the payback

$$C_{e/ec} = 0.07 \, \text{kWh}$$

$$C_{fuel}$$
 = 3\$/gallon

Preliminary results

Fuel Price Significantly Influences Payback Period

Spikes due to small number of data points for long distances

 $C_{elec} = 0.07 \, \text{kWh}$

 $C_{\text{battery}} = 4128 \$$

(1000\$/kWh)

 $C_{base} = 30791 \$$

Preliminary results

Future Activities

- Update the cost assumptions based on litterature search and expert discussions (D. Santini & A. Vyas).
- Complete fuel efficiency and cost analysis
- Add HEV vehicle
- Perform cost benefit analysis based on several scenarios to define the most approriate vehicle for different options (i.e., battery energy, battery cost, distance, fuel cost...).
- What is the impact of assuming the vehicle can be charged during the day?
- How does the results based on the RDWC compare with the latest J1711 Procedure (using both National and RWDC Utility Factors).
- Perform MonteCarlo analysis on the control strategy parameters to provide an uncertainty value.

Summary

Impact of RWDC on Fuel Efficiency

- Several vehicles with different powertrain configurations and battery energies were simulated.
- A single control strategy was selected for each option based on a combination of fuel efficiency and engine ON/OFF criteria.
- The fuel efficiency was compared with a conventional vehicle to assess the potential fuel displacement over the Kansas City RWDC.

Impact of RWDC on Cost Benefit Analysis

- With current pricing, long payback period due to high battery cost
- Increasing fuel price significantly influences payback period and is a major factor for the rentability of a PHEV
- Benefits of price reduction on payback nonlinear
- You should regularly drive longer than what your AER theoritically allows

References

- G. Singh, S. Hagspiel, M. Fellah, A. Rousseau, "Impact of RWDC on PHEVs fuel efficiency and cost for different powertrain and battery characteristics", EVS 24, Norway, May 2009
- A. Rousseau, "Impact of Real-World Drive Cycles on PHEV Battery Requirements", SAE 2009-01-1383, World Congress, April 2009
- A. Rousseau, S. Pagerit, M. Fellah, "PHEV Battery Requirements Uncertainty Based on Real World Drive Cycles", EDTA, Dec 2008, DC
- A. Rousseau, N., Shidore, R., Carlson, D., Karbowski, "Impact of Battery Characteristics on PHEV Fuel Economy", AABC 2008, Tampa (May 2008)
- J. Kwon, J. Kim, E. Fallas, S. Pagerit, and A. Rousseau, "Impact of Drive Cycles on PHEV Component Requirements", SAE paper 2008-01-1337, SAE World Congress, Detroit (April 2008).
- A. Rousseau, N. Shidore, R. Carlson, V. Freyermuth, "Research on PHEV Battery Requirements and Evaluation of Early Prototypes, AABC 2007, Long Beach (May 16-18)

