

Overview of Applied Battery Research

Gary Henriksen

Chemical Sciences & Engineering Division

Tuesday, February 26, 2008

This presentation does not contain any proprietary or confidential information.

managed by UChicago Argonne, LLC

Topics Covered

- Key Energy Storage Requirements (HEV & PHEV)
- Overall Program Objective & Approach
- Focus Areas & National Lab Collaborations
 - Calendar Life Activities & Past Examples
 - Abuse Tolerance Activities & Past Examples
 - Low-Cost Materials Activities & Past Examples
 - Low-Temperature Performance Activities & Past Examples
- Major Reports & Presentation Sequence
- Acknowledgements

FreedomCAR Energy Storage Goals (HEVs)

	42-Volt		Power Assist HEV	
	M-HEV	P-HEV	Min.	Max.
Discharge Power, kW	13 (2s)	18 (10s)	25 (10s)	40 (10s)
Regen Power, kW	8 (2s)	18 (2s)	20 (10s)	35 (10s)
Available Energy	0.3	0.7	0.3	0.5
Cold Cranking Power*, kW	8 @ 21V minimum 5 7		7	
Calendar Life, years	15			
Production Price**, \$	260	360	500	800
Operating Temperature, °C	-30/52			

- * Three 2s pulses at -30°C with 10s rest between pulses
- ** Price based on 100,000 batteries/year production level

Also, batteries need to conform with all FMVSS!

FreedomCAR Energy Storage Goals (PHEVs)

	Short-Term	Long-Term
	SUV	Car
Discharge Power, kW	45	38
Regen Power, kW	30	25
Available Energy (CD), kWh	3.4	11.6
Available Energy (CS), kWh	0.5	0.3
Cold Cranking Power*, kW	7	
Calendar Life, years	15	15
Production Price**, \$	1,700	3,400
Operating Temperature, °C	-30 to 52	

- * Three 2s pulses at -30°C with 10s rest between pulses
- ** Price based on 100,000 batteries/year production level

Also, batteries need to conform with all FMVSS!

Program Objective & Approach

Objective:

Assist the industrial developers of high-power & high-energy Li-Ion batteries to overcome the cost, life, abuse tolerance, and low-temperature performance barriers for this promising technology!

Approach (material & cell level studies):

- Understand factors that control life, inherent abuse tolerance, & lowtemperature performance of alternative Li-Ion cell chemistries
- Use knowledge to identify & develop low-cost cell materials that are more stable structurally, chemically, electrochemically, & thermally
- Demonstrate aging, abuse tolerance, & low-temperature performance characteristics of advanced chemistries in sealed cells

Focus Areas (High-Power HEV & High-Energy PHEV)

- Understand factors that limit calendar life of Li-Ion cell chemistries, identify & develop cell materials that extend the calendar life, study factors that affect SEI stability, & validate TLVT methodology
- Understand factors that limit the abuse tolerance of Li-lon cell chemistries and evaluate approaches to enhance inherent abuse tolerance of Li-lon cells
- Search for and develop low-cost cell materials, components, and technologies with enhanced stability that perform better at lowtemperature
- Understand factors that limit low-temperature performance of Li-Ion cell chemistries and evaluate approaches to enhance performance at low temperature

FY2008 Focus Area Activities

ATD Program Multi-Laboratory Collaborations

Lab	Calendar Life			Abuse	Low	Low-Temp	
	TLVT	SEI	Aging	Diagnostics	Tolerance	Cost	Perform
ANL	Х	Х	Х	X	Х	Х	Х
BNL				X			Х
INL	Х	Х	Х				Х
LBNL	Х	Х		X			
SNL	Х				Х		

Calendar Life

Recent Changes to Calendar Life Studies

- Study aging mechanisms in multiple cell chemistries establishing capability to fabricate cells within the program to facilitate this
- Study impact of PHEV type (deeper discharge) cycles vs. HEV type cycles on life
- Expand SEI/formation studies to investigate SEI layers formed via the use of electrolyte additives
- Conduct second-level TLVT tests using commercial cells to further validate TLVT test protocols

Cell Chemistries Studied

Large quantities of Gen 1 & Gen 2 Cells were built & tested

Large quartition of Contraction Local World Ballit a tooled				
	Gen 1 Baseline	Gen 2 Baseline		
Positive Electrode	8 wt % PVDF binder	8 wt % PVDF binder		
	4 wt % SFG-6 graphite	4 wt % SFG-6 graphite		
	4 wt % carbon black	4 wt % carbon black		
	84 wt % LiNi _{0.8} Co _{0.2} O ₂	84 wt % LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂		
Negative Electrode	9 wt % PVDF binder	8 wt % PVDF binder		
	16 wt % SFG-6 graphite	92 wt % MAG-10 graphite		
	75 wt % MCMB-6 graphite			
Electrolyte	1 <u>M</u> LiPF ₆ in EC:DEC (1:1)	1.2 <u>M</u> LiPF ₆ in EC:EMC (3:7)		
Separator	25µm thick PE	25µm thick PE		

Small quantities of Gen 3 cells were built by numerous cell manufacturers

	Gen 3 Baseline	Gen 3 Variant A
Positive Electrode	84% Seimi L-333 (B) 8% TB5500 Carbon Black 8% PVDF Binder (KF#1120)	84% Seimi L-333 (B) 8% TB5500 Carbon Black 8% PVDF Binder (KF#1120)
Negative Electrode	92% MCMB 10-28 graphite 8% PVDF Binder (KF#9130)	92% MCMB 10-28 graphite 8% PVDF Binder (KF#9130)
Electrolyte	1.2 <u>M</u> LiPF ₆ in EC:EMC (3:7)	1.2 $\underline{\mathbf{M}}$ LiPF ₆ in EC:EMC (3:7) with 2-3% LiC ₂ O ₄ BF ₂ additive
Separator	25 μm thick PE	25 μm thick PE

Note: L333 = NMC = Li[Li_X(Ni_{1/3}Mn_{1/3}Co_{1/3})_{1-X}]O₂ where X=0.05

Gen 2 Cell Aging Data

Reference Electrode Cell Data on Electrodes Harvested from 18650-Cell Aged at 55°C

Cell impedance rise is dominated by positive electrode impedance increase.

Reference Electrode Cell Data on Electrodes Harvested from 18650-Cell Aged at 55°C

16 POS 43% 12 lmag, Ω-cm² 13% 8 0% 0 0 5 10 15 20 25 30 Real, Ω-cm²

Major source of impedance rise is interfacial impedance at the positive electrode

Electrochemical Cell Modeling -Positive Electrode-

EXAMPLE: Cathode Surface Film Changes during Aging

XPS analysis area: 1 sq. mm.

Abuse Tolerance

18650 cell-level abuse tests are being extended to include multiple baseline cell chemistries and electrode coating thicknesses representative of those used in PHEV batteries.

Changes to Abuse Tolerance Studies

- Study abuse tolerance characteristics of multiple cell chemistries
- Study impact of going to thicker electrode coatings (lower P/E ratio) representative of PHEV cells
- Model abuse behavior of 18650 cells & predict behavior of full-size HEV & PHEV cells

Comparative DSC Data on Cathodes

Relative Reactivity of Alternative Cathode Materials (Major component of thermal runaway)

☐ Oxygen released from delithiated metal oxide cathodes due to decomposition

☐ Released oxygen reacts with organic carbonate solvents in the

electrolyte generating heat

Low-Cost Cell Materials & Components

Changes to Low-Cost Materials Study

- Develop screening test protocols for PHEV application
- Expand screening tests to include materials applicable for use in PHEV cells
- Expand material development activities to include materials applicable for use in PHEV cells (e.g. electrode materials with higher specific capacity)

Electrolyte Additive Stabilizes Graphite/L333 (Gen 3) Chemistry

EPD: EC/PC/DMC (1:1:3)

Demonstrated Feasibility of New High-Power Cell Chemistry

Nano-phase Li₄Ti₅O₁₂/Li_{1.06}Mn_{1.94}O₄ spinel

Argonne's nano-phase Li₄Ti₅O₁₂

- □ Very high rate capability
- □No lithium plating during regen at low temperature
- □No SEI & resulting heat from decomposition
- □Limited surface reactivity with electrolyte
- □Zero volume change—no structural stress

These studies led to a FreedomCAR sponsored HEV battery program with EnerDel

Low-Temperature Performance

Note: No major changes are being made to the low-temperature studies except to expand to multiple cell chemistries beyond Gen 2 & Gen 3

Gen 2 Performance at Low Temperature

Impedance increases abruptly below -10° C.

Negative and positive electrodes share the impedance rise almost equally.

EIS shows the impedance to be interfacial in nature

Studied Many Different Electrolyte Systems

→ Gen3-D Electrodes and 1.1M LiPF6 in EC:GBL:EP (1:1:3 v/v) (BID 2128), 4.0V, 1 Sep.

→ Gen3-D Electrodes and 1.1M LiPF6 in EC:GBL:DMC:EP (4:3:2:11 v/v) (BID 2129), 4.0V, 1 Sep.

JPL

K.Gering

K.Gering

Major Technical Reports

- Materials Cost Evaluation Report for High-Power Li-Ion Batteries; G. Henriksen, K. Amine, J. Liu, and P. Nelson; ANL-03/5, December 2002.
- Gen 2 Performance Evaluation Interim Report, J. Christophersen, C. Motloch, I. Bloom, V. Battaglia, E.P. Roth, and T. Duong; INEEL/EXT-03-00095, February 2003.
- Screening Report on Cell Materials for High-Power Li-Ion HEV Batteries; J. Liu, A. Kahaian,
 Belharouak, S-H Kang, S. Oliver, G. Henriksen, and K. Amine; ANL-03/16, April 2003.
- **4.** <u>Handbook of Diagnostic Techniques</u>; contributions from ANL, BNL, and LBNL; LBID-2464, April 2003.
- Low-Cost Flexible Packaging for High-Power Li-Ion Batteries; A. Jansen, K. Amine, and G. Henriksen; ANL-04/09, June 2004.
- Battery Technology Life Verification Test Manual; H. Haskins, V. Battaglia, J. Christophersen,
 I. Bloom, G. Hunt, and E. Thomas; INEEL/EXT-04-01986, February 2005.
- Diagnostic Examination of Gen 2 Lithium-Ion Cells and Assessment of Performance
 <u>Degradation Mechanisms</u>; contributions from ANL, BNL, LBNL, and UIUC; edited by D. Abraham; ANL-05/21, July 2005.
- 8. <u>Gen 2 Performance Evaluation Final Report</u>; J. Christophersen, I. Bloom, E. Thomas, K. Gering, G. Henriksen, V. Battaglia, & D. Howell; INL/EXT-05-00913, November 2005.
- 9. <u>Comparative Costs of Flexible Package Cells and Rigid Cells for Lithium-Ion HEV</u>
 <u>Batteries</u>; P. Nelson and A. Jansen; ANL-06/43, June 2006.

Note: Work performed under DOE's ATD Program has produced a large number of peer reviewed journal articles and conference papers, some of which will be identified by individual PIs in their presentations.

Presentation Sequence

Calendar Life

- 4 presentations on Gen 3 cells (builds, aging, diagnostics, & modeling)
- 4 presentations on SEI layer studies (characterization/diagnostics)
- 1 presentation (with 2 speakers on TLVT studies)

Abuse Tolerance

2 presentations (materials-level & cell-level studies)

Low-Cost Materials

- 1 presentation on advanced material screening
- 3 presentations on advanced material development

Low-Temperature Performance

3 presentations (characterization, cell modeling, & electrolyte modeling)

Acknowledgements

- This work is funded by DOE-EERE, Office of Vehicle Technologies
 - David Howell
 - Tien Duong
- Members of the ATD Program team at:
 - ANL
 - BNL
 - INL
 - LBNL
 - SNL

Also, university collaborators at:

- Illinois Institute of Technology
- University of Illinois Urbana-Champaign
- University of Rhode Island
- Comments and suggestions from members of the FreedomCAR Energy Storage Technical Team