

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

Dean Fry, BP April 3, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Infrastructure Lessons Learned

Fueling Station Location and Customer Selection

Coordination between the OEM and Hydrogen Station Developer is crucial for optimal selection of sites / customers

ISSUE

Suboptimal site selection has resulted in low station utilization

SOLUTIONS

- Clear understanding / agreement of OEM FCV deployment plan is critical
- Easy station access from a highway or major road is important
- Ability to offer 24/7 access is a factor

Hydrogen Infrastructure Permitting

Permitting process is fraught with unknowns, obstacles and delays

ISSUES

- The permitting process through local authorities, especially fire authorities, is new each time and is highly variable due to unfamiliarity with hydrogen specifications and lack of common requirements
- Building departments in general are unclear of requirements
- Equipment may not meet local and state certifications, and certification requirements change from one jurisdiction to another
- NEPA and local environmental processes are lengthy and not widely understood

SOLUTIONS

- Meet early to understand requirements and kick-off the permitting processes as soon as possible
- Provide education to authorities up-front and bring back when station is running
- A need for permitting standardization
- A need for equipment / station standardization rather than "one-off" designs

NextEnergy (Detroit) Station

Infrastructure Lessons Learned

Infrastructure Lessons Learned

Infrastructure Legal Contracts

Legal agreements take longer than expected: customers, suppliers, OEM's

ISSUES

- Indemnification and liability: BP high risk position (i.e. customers vs. suppliers)
- Site owners exert some level of control over access / supply
- Hydrogen sales reluctance to pay for fuel

SOLUTIONS

????

Hydrogen Purity

Purity issues must be resolved prior to commercialization

ISSUES

- No one wants to accept the H2 purity risk in demonstration projects
- Equipment suppliers have difficulty in meeting purity guidelines
- Limited number of laboratories that can test to extremely tight purity guidelines which translates into high cost
- No ASTM test standards
- Care must be taken while sampling
- Significant time and financial commitment to test for and assure purity
- Contaminants can come from the open end of the nozzle

SOLUTIONS

- A need for mutual agreement between OEM's and Hydrogen Station Developers on purity specifications
- A need to finalize development of test standards

SMUD Station (in conjunction with Ford)

Infrastructure Lessons Learned

Infrastructure Lessons Learned

Community Engagement Prior to Station Construction

Engagement of the community is importance and cannot be taken for granted

ISSUE

Thorough due diligence of local landscape and early buy in from local officials is critical

SOLUTION

Present ideas and solicit community feedback as early as possible

Station Equipment Acquisition – Design – Construction - Operation

The 350 bar systems seem to have reached a comfortable level of mature and safe performance but there is more work to do

ISSUES

- New 700 bar systems need to be proven for long-term use and reliability
- Vehicle communication standardization continues to be an issue IR vs. RF
- There is confusion between the NFPA specifications which complicates design
- Local site partners bring unique requirements to each project which can complicate and delay progress
- Commercial scale hydrogen stations have large footprints
- Lack of technology to meet Weights and Measures requirements
- BP rigorous processes result in unexpected suppliers' delays
- BP rigorous safety construction processes result in additional efforts to educate third parties
- Low station utilization has not allowed for rigorous testing of demonstration equipment

SOLUTIONS

- NFPA 2 should help to clarify requirements
- Lessons learned from 350 bar systems should help the transition to 700 bar systems
- A need for a concerted effort to increase station utilization

Burbank - Existing Station / Site

Infrastructure Lessons Learned

