Effects of point defects and impurities on kinetics in NaAIH₄

Chris G. Van de Walle

Materials Department, UCSB

Acknowledgments: <u>Amra Peles</u> Anderson Janotti, Gareth Wilson-Short Support: DOE University of California Energy Institute

DOE Theory Focus Session on Hydrogen Storage Materials San Francisco, California March 24, 2008

Sodium Alanate

 Viable hydrogen storage material (5.6 wt%)

 $NaAIH_4 \leftrightarrow 1/3 Na_3AIH_6 + 2/3 AI + H_2$ $Na_3AIH_6 \leftrightarrow 3 NaH + AI + 3/2 H_2$

- But: reactions slow
 - Only happen at too high temperature
- Addition of transition metals (Ti) was found to speed up kinetics
 - Bogdanovic *et al.,*
 - J. Alloys. Compd. 253, 1 (1997).
 - Explanation?

Hydrogen in storage materials

- Calculations of bulk properties
 - Formation enthalpy, ...
 - Valuable information, but does not directly address kinetics
- How does dehydrogenation take place?
 - "One hydrogen at a time"
 - Imagine fully hydrogenated material as starting point
- Treat hydrogen as a "defect"
 - Move one hydrogen
 - » Hydrogen interstitial
 - » Hydrogen vacancy
 - Point defects well known to be involved in diffusion
 - May also serve as nucleation sites for new phases
- Study with first-principles computations
 - Formation energies
 - » Likelihood of a certain defect occurring
 - Diffusion

Calculations

- Density functional theory (DFT) (VASP)
 - Generalized gradient approximation (GGA) for exchange-correlation
 - Projector augmented wave (PAW) pseudopotentials
 - VASP
- Plane-wave expansion with cutoff 450 eV
- 96-atom supercell geometry
 - 2 x 2 x 2 k-point grid
- NaAlH₄:
 - Insulator, E_g = 4.75 eV (GGA); 6.9 eV (quasiparticle calculation)
 - » Peles et al., Phys. Rev. B 70, 165105 (2004).
 - Formation enthalpy: -48.9 kJ/mol H₂

Formalism

*E*_{form}: formation energy Concentration: *C* = *N*_{sites} exp [- *E*_{form}/*kT*]

 Example: Hydrogen interstitial *E*_{form}(H_i) = *E*_{tot}(NaAIH₄:H_i) - *E*_{tot}(NaAIH₄) - μ_H μ_H: energy of hydrogen in reservoir, i.e., H chemical potential

Formalism

*E*_{form}: formation energy Concentration: *C* = *N*_{sites} exp [- *E*_{form}/*kT*]
Example: Hydrogen interstitial *E*_{form}(H_i) = *E*_{tot}(NaAIH₄:H_i) - *E*_{tot}(NaAIH₄) - μ_H μ_H: energy of hydrogen in reservoir, i.e., H chemical potential
H interstitial in *positive charge state*

 $E_{\text{form}}(H_i^+) = E_{\text{tot}}(\text{NaAIH}_4; H_i^+) - E_{\text{tot}}(\text{NaAIH}_4) - \mu_{\text{H}} + \mu_{\text{e}}$

 μ_e : energy of electron in its reservoir, i.e., the Fermi level

• H interstitial in *negative charge state* $E_{form}(H_i^-) = E_{tot}(NaAlH_4:H_i^-) - E_{tot}(NaAlH_4) - \mu_H - \mu_e$

Hydrogen interstitials in NaAlH₄

Hydrogen vacancies in NaAlH₄

• Remove a hydrogen atom: create a vacancy

Interstitials and Vacancies

- H_i and V_H simultaneously present
- Charge neutrality!
 - Equal number of + and defects

 $\mu_{\rm e}$ "pinned" at position where formation energies are equal $E_{\rm form}(V_{\rm H}^{+}) = E_{\rm form}({\rm H_i^{-}})$ = 0.81 eV At 100 °C: $c(V_{\rm H}^{+}) = c({\rm H_i^{-}}) \approx 10^{11} {\rm cm^{-3}}$

Titanium

- Most stable on AI site
- Can occur in different charge states

 $\mu_{\rm e}$ "pinned" at position where + and – have equal formation energies

(irrespective of Ti concentration, as long as exceeds defect concentration)

$$\mu_{\rm e} = \varepsilon(+/-) = 3.41 \text{ eV}$$

A note on formation energies...

- Some papers in the literature seem to (implicitly or explicitly) assume that if a calculated formation energy is positive, the impurity will not incorporate.
- This is not correct. Remember:

 $C = N_{\text{sites}} \exp \left[-\frac{E_{\text{form}}}{kT}\right]$

- A *finite* positive formation energy can lead to a finite concentration.
- In fact, if the formation energy were *negative*, the material would be unstable in the presence of the impurity!

Interstitials & Vacancies and Titanium

- Presence of Ti shifts μ_e away from μ_e^{int}
- Lowers formation energy of the defects!

Diffusion

- Once the defects are created, they can move very fast
- Calculations of diffusion barriers

Enhancement of kinetics

• Ti: electrically active

 \Rightarrow shifts the Fermi level

 \Rightarrow lowers formation energy of hydrogen-related defects (H_i⁻)

 \Rightarrow increases the concentration of the defect

 \Rightarrow increase in self-diffusion

 \Rightarrow allows achieving a given concentration of defects at a lower temperature

Enhancement of kinetics

- Typically several mol % of Ti are added (>10²⁰ cm⁻³)
 - Only small fraction of added Ti is needed to achieve the effect!
 - Adding Ti adversely affects the hydrogen weight capacity.

• Experimentally:

- Several Ti-related species have been detected
- Only a minute fraction of the total Ti produces the observed enhancements
 - » Sandrock et al., J. Alloys Compd. 339, 299-308 (2002).
 - » Kuba et al., J. Mater. Res. 20, 3265–3269 (2005).
- Ti-Al alloy formation
 - » Presence of these alloys is not required in order to achieve a significant enhancement in the kinetics of the alanate
 - » Kuba *et al.*, J. Mater. Res. **20**, 3265–3269 (2005).
- Adding large amounts of Ti is unnecessary

Enhancement of kinetics

- Kinetics of hydrogen-related point defects is intimately tied to the decomposition reaction
 - Decrease in the activation energy for hydrogen diffusion: $\Delta \mu_e = 0.44 \text{ eV} = \frac{42 \text{ kJ/mol}}{42 \text{ kJ/mol}}$
 - Experimentally observed change in activation energy for Tidoped alanate compared to pure alanate:
 ~40 kJ/mol
 - » Sandrock et al., J. Alloys Compd. 339, 299-308 (2002).
- Enhancement is independent of the amount of added Ti
 - ...as long as the Ti_{AI} concentration exceeds the concentration of hydrogen-related defects

Defect Geometry

- Hydrogen-related defects induce large changes in lattice geometry
- May serve as nucleation sites for formation of new phases

Hydrogen vacancies

• V_H⁺: formation of two planar AlH₃ complexes with a H atom in between

• V_H⁻: structural rearrangements much smaller

Hydrogen interstitials

H_i-

H_i+

Conclusions

- Point defects play important role in kinetics of NaAlH₄
 - Vacancies, interstitials
 - Mediate hydrogen transport
 - Large structural relaxations
 - Charged
 - Formation energies changed due to doping with transition metals
 - Consistent with observed effects of Ti, Zr incorporation
- References:
 - A. Peles and C. G. Van de Walle, J. Alloys Compds. 446-447, 459 (2007).
 - A. Peles and C. G. Van de Walle, Phys. Rev. B 76, 214101 (2007).

