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Sodium AlanateSodium Alanate 
• Viable hydrogen storage material 


(5.6 wt%) 
NaAlH4 ↔  1/3 Na3AlH6 + 2/3 Al + H2 

Na3AlH6 ↔  3 NaH + Al + 3/2 H2 

• But: reactions slow 
– Only happen at too high temperature 

• Addition of transition metals (Ti) 


was found to speed up kinetics
 

– Bogdanovic et al., 
J. Alloys. Compd. 253, 1 (1997). 

– Explanation? 



Hydrogen in storage materialsHydrogen in storage materials 
• Calculations of bulk properties 

– Formation enthalpy, … 
– Valuable information, but does not directly address kinetics 

• How does dehydrogenation take place? 
– “One hydrogen at a time” 
– Imagine fully hydrogenated material as starting point 

• Treat hydrogen as a “defect” 
–	 Move one hydrogen
 

» Hydrogen interstitial 
 

» Hydrogen vacancy 
 

– Point defects well known to be involved in diffusion 
– May also serve as nucleation sites for new phases 

• Study with first-principles computations 
– 	 Formation energies
 

» Likelihood of a certain defect occurring 
 

– Diffusion 



CalculationsCalculations 
•	 Density functional theory (DFT) (VASP) 

–	 Generalized gradient approximation (GGA) 


for exchange-correlation
 

– 	 Projector augmented wave (PAW) pseudopotentials 
– 	 VASP 

•	 Plane-wave expansion with cutoff 450 eV 
•	 96-atom supercell geometry 

–	 2 x 2 x 2 k-point grid 

•	 NaAlH4: 
–	 Insulator, Eg = 4.75 eV (GGA); 6.9 eV (quasiparticle calculation) 

» Peles et al., Phys. Rev. B 70, 165105 (2004). 
–	 Formation enthalpy: -48.9 kJ/mol H2 



FormalismFormalism 

• Eform: formation energy 
Concentration: 
 

C = Nsites exp [− Eform/kT]
 

• Example: Hydrogen interstitial 
Eform(Hi) = Etot(NaAlH4:Hi) −  Etot(NaAlH4) − μH 
μH: energy of hydrogen in reservoir, i.e., H chemical potential 



Hydrogen defect in an insulatorHydrogen defect in an insulator 
 

EF 
Conduction BandFermi level 

Valence Band 

Empty states 

Hydrogen-induced level 

States filled with electrons
 



FormalismFormalism 

• Eform: formation energy 
Concentration: 
 

C = Nsites exp [− Eform/kT]
 

• Example: Hydrogen interstitial 
Eform(Hi) = Etot(NaAlH4:Hi) −  Etot(NaAlH4) − μH 
μH: energy of hydrogen in reservoir, i.e., H chemical potential 

• H interstitial in positive charge state 
Eform(Hi

+) = Etot(NaAlH4:Hi
+) −  Etot(NaAlH4) − μH + μe 

μ : energy of electron in its reservoir, i.e., the Fermi levele 

• H interstitial in negative charge state 
Eform(Hi 

−) = Etot(NaAlH4:Hi 
−) −  Etot(NaAlH4) − μH − μe 



Hydrogen interstitials in NaAlHHydrogen interstitials in NaAlH44
 



Hydrogen vacancies in NaAlHHydrogen vacancies in NaAlH44 

VH
+ without 

relaxation 

• Remove a hydrogen atom: create a vacancy 



μe 

Eform(VH 

At 100 oC: 

c (VH 

InterstitialsInterstitials andand VacanciesVacancies 
• Hi and VH simultaneously present 
• Charge neutrality! 

– Equal number of + and −  defects 
“pinned” at position where

formation energies are equal 
+) = Eform(Hi 

−) 

= 0.81 eV 

+) = c (Hi 
−) ≈ 1011 cm-3 



TitaniumTitanium 
•	 Most stable on Al site 
•	 Can occur in different charge 

states 
ε(+/−)	 μe “pinned” at position where 

+ 

−  
0 

+ and – have equal
formation energies 

(irrespective of Ti 
concentration, as long as
exceeds defect 
concentration) 

μe = ε(+/−) = 3.41 eV 



 

A note on formation energiesA note on formation energies…… 
– Some papers in the literature seem to (implicitly or 

explicitly) assume that if a calculated formation 
energy is positive, the impurity will not incorporate. 

– This is not correct. Remember:
 
C = Nsites exp [− Eform/kT]
 

– A  finite positive formation energy can lead to a 
finite concentration. 

– In fact, if the formation energy were negative, the 
material would be unstable in the presence of the 
impurity! 



Eform(Hi 

At 100 oC: 

c (Hi 

Interstitials & VacanciesInterstitials & Vacancies andand TitaniumTitanium 
 

int• Presence of Ti shifts μ away from μe e 

• Lowers formation energy of the defects! 
ε(+/−) μe “pinned” at 0.44 eV higher 

value ⇒ 

−) = 0.81 − 0.44 eV 

= 0.37 eV 

−) ≈ 1017 cm-3 

(6 orders of magnitude 
higher than without Ti!) 



DiffusionDiffusion 

•	 Once the defects are created, they can 
move very fast 

•	 Calculations of diffusion barriers 



Enhancement of kineticsEnhancement of kinetics 

• Ti: electrically active 
⇒ shifts the Fermi level 
⇒ lowers formation energy of hydrogen-related 
defects (Hi

-) 
⇒ increases the concentration of the defect 
⇒ increase in self-diffusion 
⇒ allows achieving a given concentration of 
defects at a lower temperature 



Enhancement of kineticsEnhancement of kinetics 

• Typically several mol % of Ti are added (>1020 cm-3) 
– Only small fraction of added Ti is needed to achieve the effect! 
– Adding Ti adversely affects the hydrogen weight capacity. 

• Experimentally: 
– Several Ti-related species have been detected 
– Only a minute fraction of the total Ti produces the observed

enhancements 
» Sandrock et al., J. Alloys Compd. 339, 299-308 (2002). 
» Kuba et al., J. Mater. Res. 20, 3265–3269 (2005). 

– 	 Ti-Al alloy formation 
» Presence of these alloys is not required in order to achieve a

significant enhancement in the kinetics of the alanate 
» Kuba et al., J. Mater. Res. 20, 3265–3269 (2005). 

• Adding large amounts of Ti is unnecessary 



Enhancement of kineticsEnhancement of kinetics 

•	 Kinetics of hydrogen-related point defects is 
intimately tied to the decomposition reaction 
–	 Decrease in the activation energy for hydrogen diffusion: 
Δμe = 0.44 eV = 42 kJ/mol 

– 	 Experimentally observed change in activation energy for Ti-
doped alanate compared to pure alanate: 
∼40 kJ/mol 

» Sandrock et al., J. Alloys Compd. 339, 299-308 (2002). 

•	 Enhancement is independent of the amount of 
added Ti 
–	 …as long as the TiAl concentration exceeds the 


concentration of hydrogen-related defects
 



Defect GeometryDefect Geometry 

•	 Hydrogen-related defects 
induce large changes in 
lattice geometry 

•	 May serve as nucleation 
sites for formation of new 
phases 



Hydrogen vacanciesHydrogen vacancies 

•	 VH
+: formation of two planar AlH3 complexes with 

a H atom in between 

original site 

of H atom
 

• VH 
−: structural rearrangements much smaller
 



Hydrogen interstitialsHydrogen interstitials 

Hi 
− Hi

+ 



ConclusionsConclusions 
•	 Point defects play important role in kinetics of

NaAlH4 
– 	 Vacancies, interstitials 
–	 Mediate hydrogen transport 
– 	 Large structural relaxations 
–	 Charged 
–	 Formation energies changed due to doping with transition

metals 
–	 Consistent with observed effects of Ti, Zr incorporation 

•	 References: 
–	 A. Peles and C. G. Van de Walle, J. Alloys Compds. 446-

447, 459 (2007). 
–	 A. Peles and C. G. Van de Walle, Phys. Rev. B 76, 214101 

(2007). 
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