FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Cryo-Hydrogen Storage Workshop

February 15, 2011 Crystal Gateway Marriott Crystal City, Virginia

Ned T. Stetson

Acting Hydrogen Storage Team Lead Fuel Cells Technologies Program U.S. Department of Energy

- Welcome and Introductions!
- Recap of Compressed Gas Workshop (Feb. 14th)
- Introduction to cryo-compressed and cryo-sorbent storage
- Objective of Workshop
- Scope of Workshop

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Larry Blair Consultant to DOE The Workshop Team

Bob Bowman ORNL Mike Tetelman SRA International

The DOE Hydrogen Storage Team

Ned Stetson

Acting Hydrogen Storage Team Lead 202-586-9995 ned.stetson@ee.doe.gov

Carole Read

Technology Development Manager 202-586-3152 carole.read@ee.doe.gov

Scott McWhorter

Hydrogen Storage Technical Detailee 202-586-7009 christopher.mcwhorter@ee.doe.gov

Grace Ordaz

Technology Development Manager 202-586-8350 grace.ordaz@ee.doe.gov

Kevin Hofmaenner

Hydrogen Storage Support 202-586-3632 kevin.hofmaenner@ee.doe.gov

Golden Field Office: Jesse Adams, Jim Alkire, Paul Bakke, Katie Randolph and Kristian Whitehouse

Recap of cH₂ Workshop

- Carbon Fiber
 - ORNL pursuing low cost precursors for high-strength CF
 - Multiple fibers with matched strength/modulus would allow optimization of fiber use on tanks
 - Appropriate CF packaging will reduce labor/manufacturing steps
 - QC at CF and tank manufacturers can reduce cost and weight
- Balance of Plant
 - Consider consolidation versus separate functionalities
 - Match safety factors of BOP and tank components
 - Component standards needed
- Alternative
 - Type II, hoop wrapped, tanks
 - Linerless and/or bladder lined tanks
 - Nanofiber addition to CF matrix
 - Optimization of multi-tank configurations

Why storage at cryogenic temperatures?

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Temperature can be use along with pressure to increase density

Above the critical temperature (33K), H₂ density increases rapidly with pressure.

Supercritical fluid densities greater than the liquid hydrogen density (71 g/L) are possible.

Cryo-compressed hydrogen systems

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- High-pressure capable cryo-vessels
 - Double-walled vessels
 - Inner vessel: high-P Type III cylinder
 - Multi-Layer Vacuum Super Insulation (MLVSI)
 - Improved dormancy vs. liquid
 - > > 40 g/L H₂ system density possible
 - > 6 wt.% is achievable

Figure sources: ANL, LLNL

Hydrogen Sorbents

ENERGY Energy Efficiency & Renewable Energy

- High surface area, porous materials
 - Diatomic molecule adsorbs on surface
 - Excess capacity reaches a maxima at a specific pressure, above which advantages are minimized
 - For carbon-based materials, ~1 wt% per 500 m²/gm specific surface area

"Material" Hydrogen Capacity Definitions

Capacity

Total H₂

Capacity

Excess H₂ A Capacity

Gas phase molecule

Figure sources: Karl Gross, H₂ Technology Consulting

hydrogenandfuelcells.energy.gov

Sorption Systems

Energy Efficiency & Renewable Energy

- Adsorption is through weak physisorptive interactions
 - Van der Waals-type interactions
 - For carbon-based materials, ~4-6 kJ/mol H₂
 - Capacity drops off as temperature increases

U.S. DEPARTMENT OF

ENERGY

Source: Ahluwalia, ANL, DOE 2010 Hydrogen Program Annual Merit Review Proceedings, http://www.hydrogen.energy.gov/pdfs/review10/st001_ahluwalia_2010_o_web.pdf

Performance and Cost Metric	Units	CcH2	MOF-177	2010 Targets	2015 Targets	Ultimate Targets
Usable Storage Capacity (Nominal)	kg-H ₂	5.6	5.6			
Usable Storage Capacity (Maximum)	kg-H ₂	6.6	5.6			
System Gravimetric Capacity	wt%	5.5-9.2	4.1	4.5	5.5	7.5
System Volumetric Capacity	kg-H ₂ /m ³	41.8-44.7	34.1	28	40	70
Storage System Cost	\$/kWh	12	18	4	2	TBD
Fuel Cost	\$/gge	4.80	4.6	2-3	2-3	2-3
Cycle Life (1/4 tank to Full)	Cycles	5500	5500	1000	1500	1500
Minimum Delivery Pressure, FC/ICE	atm	3-4	4	4/35	3/35	3/35
System Fill Rate	kg-H ₂ /min	1.5-2	1.5-2	1.2	1.5	2.0
Minimum Dormancy (Full Tank)	W-d	4-30	2.8			
H ₂ Loss Rate (Maximum)	g/h/kg-H ₂	0.2-1.6	0.9	0.1	0.05	0.05
WTT Efficiency	%	41.1	41.1	60	60	60
GHG Emissions (CO ₂ eq)	kg/kg-H ₂	19.7	19.7			
Ownership Cost	\$/mile	0.12	0.15			

Source: Ahluwalia, ANL, DOE 2010 Hydrogen Program Annual Merit Review Proceedings, http://www.hydrogen.energy.gov/pdfs/review10/st001_ahluwalia_2010_o_web.pdf

Commonalities and Differences

- Cryogenic operation
 - Cryo-compressed: 20 +100 K
 - Cryo-sorbents: ~77 +100 K
- Heavily insulated pressure vessel
 - Cryo-compressed: current designs use MLVSI
 - Cryo-sorbents: may use MLVSI but other options being investigated
- Inner pressure vessel
 - Cryo-compressed: may operate up to 350 or even 700 bar
 - Cryo-sorbents: operation may be <100 but could be several hundred bar
- Need for heat exchange
 - Cryo-compressed: may need to evaporate liquid, warm exiting gas
 - Cryo-sorbents: heat of adsorption needs to be removed/added for operation
- Phase state
 - Cryo-compressed: potential for liquid, supercritical and gaseous states
 - Cryo-sorbent: most likely only gaseous and adsorbed states

- Identify R&D needs to validate these technologies for automotive applications, e.g.,
 - dormancy issues
 - robustness of insulation systems for vehicles
 - use of carbon fiber composites in high frequency pressure cycle application at cryogenic temperatures
 - procedures and standards to validate designs
 - Iow-cost manufacturability of the systems
 - understanding of potential phase changes during operation of cryo-compressed systems
- Identify common needs for both areas where efforts may benefit both
- Identify unique needs for each

Scope of Workshop

U.S. DEPARTMENT OF ENERGY R

Energy Efficiency & Renewable Energy

- In-Scope:
 - > the "on-board" system hardware
 - materials of construction and design
 - testing and validation of components and systems
 - on-board operation
 - understanding affect of drive cycles/use patterns
 - effect of initial conditions on refill
 - potential changes in state that may occur
- Out-of-scope:
 - off-board systems and processing, e.g.,
 - compression, storage and dispensing
 - > overall efficiency
 - energy penalty for liquefaction, etc.

Thank you for your participation!

hydrogenandfuelcells.energy.gov

- 1. What are the key R&D needed to validate the technologies
- 2. What is needed to develop codes and standards for these technologies
- 3. What are the balance of plant needs