Catalytic Effect of Ti for Hydrogen Cycling in NaAlH₄

Mei-Yin Chou School of Physics Georgia Institute of Technology (DE-FG02-05ER46229)

Acknowledgment: Yan Wang, Roland Stumpf

Why is NaAlH₄ interesting?

A viable candidate for hydrogen-storage material:

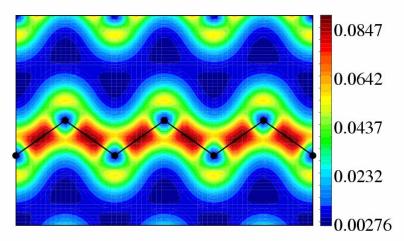
High theoretical weight-percent hydrogen content of 5.55% and low cost

But (before 1997)

Dehydrogenation occurs at high temperature; rehydrogenation is difficult.

Bogdanovic and Schwickardi, 1997

Hydrogen can be reversibly absorbed and desorbed from NaAlH₄ under moderate conditions by the addition of <u>catalysts</u> (compounds containing Ti, Zr, *etc*.)


High Hydrogen Contents in Complex Hydrides

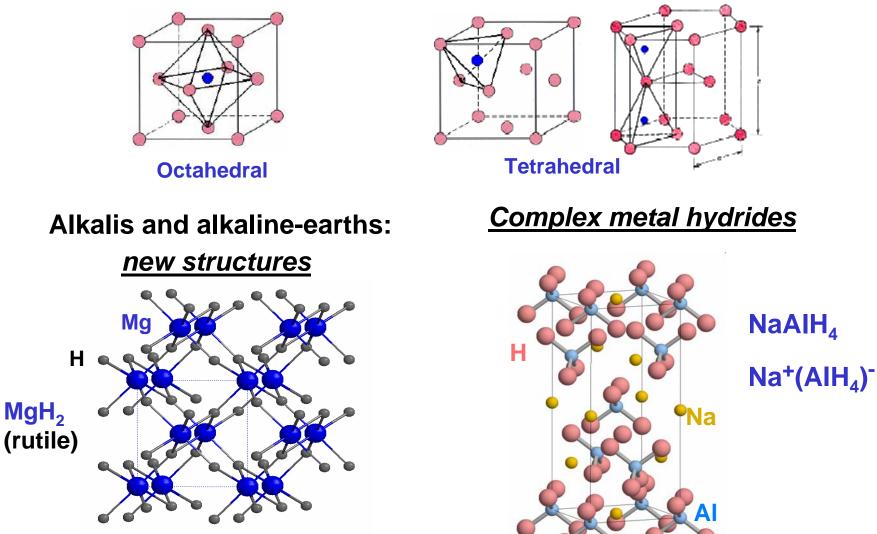
Hydride	wt%	Hydride	wt%
$Be(BH_4)_2$	20.8	$Mg(AIH_4)_2$	9.3
LiBH ₄	18.2	$Ca(AIH_4)_2$	7.9
$Mg(BH_4)_2$	14.9	KBH ₄	7.5
Ca(BH ₄) ₂	11.6	NaAlH ₄	7.5
NaBH4	10.7	$Ga(AIH_4)_3$	7.4
LiAIH4	10.6	Mg ₂ FeH ₆	5.5

First-Principles Studies of Materials Properties

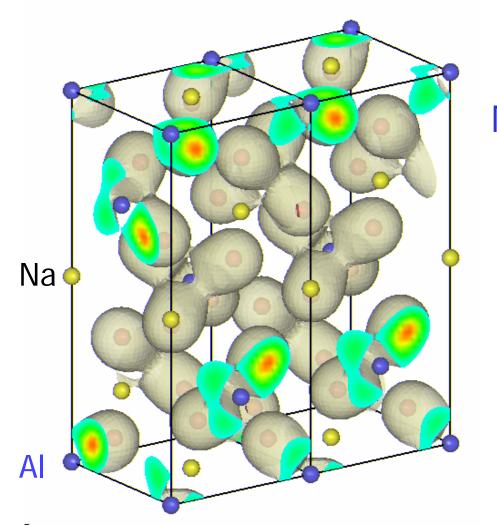
State-of-the-Art Simulation Methods:

- Density Functional Theory
- Many-Body Perturbation Theory
- Quantum Monte Carlo Methods

Electron density in Si crystal


From the total energy as a function of atomic positions, one gets

- phase stability (lowest-energy atomic configurations)
- mechanical/elastic properties
- interatomic forces \rightarrow phonons, *ab initio* molecular dynamics
- combined with other theories, e.g., calculating transition temperature


Systems: solids, surfaces, molecules, clusters, nanostructures

Where is hydrogen in metal hydrides?

Transition metals: *interstitial sites*

Density Isosurface (0.25 Å⁻³)

NaAlH₄

Decomposition and Reformation of NaAlH₄

Improved kinetics with catalysts

Step 1: NaAlH₄ \leftrightarrow 1/3 Na₃AlH₆ + 2/3 Al + H₂

1 atm / 33°C 3.71 wt. % H_2 $\Delta H = 37$ KJ/mol; activation energy = 79.5 KJ/mol

Step 2: Na₃AlH6 \leftrightarrow 3 NaH + Al + 3/2 H₂

1 atm / 126°C 1.85 wt. % H_2 $\Delta H = 47$ KJ/mol; activation energy = 97 KJ/mol • The catalyst enters the bulk and stimulates phase separation and crystal growth. (Need to check the energetics.)

OR

• The catalyst does not enter the bulk, but acts as a hydrogen dissociation-recombination site near the surface. Possibly also helps the nucleation of Al phase. (Need to identify the mobile species.)

2x2x2 supercell calculations of reaction energies:

Ti replacing Na: Ti(s) + Na₁₆Al₁₆H₆₄ \rightarrow Na(s) + TiNa₁₅Al₁₆H₆₄ +2.96 eV

Ti replacing Na and Na coming out with one H: Ti(s) + Na₁₆Al₁₆H₆₄ \rightarrow NaH(s) + TiNa₁₅Al₁₆H₆₃ +2.31 eV

Ti replacing AI: Ti(s) + Na₁₆AI₁₆H₆₄ \rightarrow AI(s) + Na₁₆TiAI₁₅H₆₄ +1.25 eV (high barrier?)

Interstitial Ti: Ti(s) + Na₁₆Al₁₆H₆₄ \rightarrow Ti-Na₁₆Al₁₆H₆₄ +1.52 eV

Long-range diffusion of Al

K. J. Gross et al. J. Alloys Compds. 297, 270 (2000).

- (1) NaAlH₄ \leftrightarrow 1/3 Na₃AlH₆ + 2/3 Al + H₂
- (2) $Na_3AIH_6 \leftrightarrow 3 NaH + AI + 3/2 H_2$

With catalysts, Eqs. (1) and (2) are rapid solid-state reactions and one expects to get a homogeneous mixture composed of extremely small grains of each phase. However, the in-situ diffraction experiments showed narrow peaks corresponding to relatively large crystallites (> 100 nm). Therefore, there must be some long-range mechanism transporting AI over a long distance (~1000 Å). We expect a **<u>different</u>** dehydrogenation mechanism in the alanate than in traditional interstitial metal hydrides (namely, not hydrogen diffusion alone). A possible mobile species containing both AI and H is AIH_3 .

Possible Roles of the Catalyst (e.g., Ti)

Observation: Dehydrogenation process involves longrange diffusion of metal species to generate segregated NaH and AI phases.

• The catalyst enters the bulk and stimulates phase separation and crystal growth. (Need to check the energetics.)

OR

 The catalyst does not enter the bulk, but acts as a hydrogen dissociation-recombination site near the surface. Possibly also helps the nucleation of Al phase. (Need to identify the mobile species.) Decomposition and Reformation of NaAlH₄

Improved kinetics with catalysts

Step 1: NaAlH₄ \leftrightarrow 1/3 Na₃AlH₆ + 2/3 Al + H₂

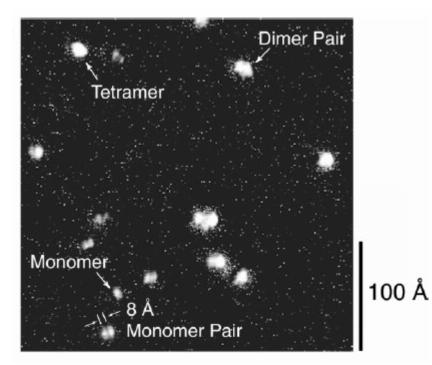
1 atm / 33°C 3.71 wt. % H_2 $\Delta H = 37$ KJ/mol; activation energy = 79.5 KJ/mol

Step 2: Na₃AlH6 \leftrightarrow 3 NaH + Al + 3/2 H₂

1 atm / 126°C 1.85 wt. % H_2 $\Delta H = 47$ KJ/mol; activation energy = 97 KJ/mol Synthesis of NaAlH₄ from AlH₃ without a Catalyst

 $NaH + AIH_3 \rightarrow NaAIH_4$

A. E. Finholt et al., J. Inorg. Nucl. Chem. 1, 317 (1955); S. Chaudhuri et al., J. Am. Chem. Soc. 128, 11404 (2006).


 $Na_3AIH_6 + 2AIH_3 \rightarrow 3 NaAIH_4$

M. Mamula et al., Coll. Czechoslov. Chem. Commun. 32, 884 (1967).

Atomic Hydrogen Interacting with AI Surfaces

"H adsorption and the formation of alane oligomers on Al(111)" E. P. Go, K.Thuermer, and J. E. Reutt-Robey, Surf. Sci. 437, 377 (1999).

Complementary scanning tunneling microscopy (STM) and surface infrared (IR) measurements show that H reacts strongly with AI(111), producing a variety of new alane (aluminum hydride) surface species. Alane oligomers, ranging in size from the monomer to 30mers, form through a sequence of surface etching and condensation reactions.

H extracts aluminium atoms directly from the surface (H etching), forming alane oligomers.

Does Ti affect the decomposition of AIH3? YES!! Different decay products of alanates at room temperature:

E. Wiberg and R. Uson, Zeitschrift Naturforschung 6b, 392 (1951).

"The decay of the metastable aluminium hydride at room temperature happens under the catalytic influence of the finely distributed titanium."

$$\begin{split} \mathsf{M}(\mathsf{A}\mathsf{IH}_4)\mathsf{n} &\to \mathsf{M} + \mathsf{n} \,\mathsf{A}\mathsf{I} + 2\mathsf{n} \,\mathsf{H}_2 & (\mathsf{M} = \mathsf{Ti}, \,\mathsf{Fe}, \,\mathsf{Cu}, \,\mathsf{Si}, \,\mathsf{AI}, \,\mathsf{B}, \,\textit{etc.}) \\ \mathsf{M}(\mathsf{A}\mathsf{IH}_4)\mathsf{n} &\to \mathsf{M} + \mathsf{n}/2 \,\mathsf{H2} + \mathsf{n} \,\mathsf{A}\mathsf{IH}_3 & (\mathsf{M} = \mathsf{In}, \,\mathsf{TI}, \,\mathsf{Sn}, \,\textit{etc.}) \\ \mathsf{M}(\mathsf{A}\mathsf{IH}_4)\mathsf{n} &\to \mathsf{MH}_\mathsf{n} + \mathsf{n} \,\mathsf{A}\mathsf{IH}_3 & (\mathsf{M} = \mathsf{Zn}, \,\mathsf{Ga}, \,\mathsf{Sn}, \,\textit{etc.}) \end{split}$$

Proposed Mechanism for Catalyst-Assisted Decomposition and Rehydrogenation of NaAlH₄

 $\begin{array}{l} \mathsf{NaAIH}_4 \leftrightarrow \mathsf{1/3}\ \mathsf{Na}_3\mathsf{AIH}_6 + \mathsf{2/3}\ \mathsf{AIH}_3 \leftrightarrow \mathsf{1/3}\ \mathsf{Na}_3\mathsf{AIH}_6 + \mathsf{2/3}\ \mathsf{AI} + \mathsf{H}_2 \\ (\text{oligomers}) \end{array}$

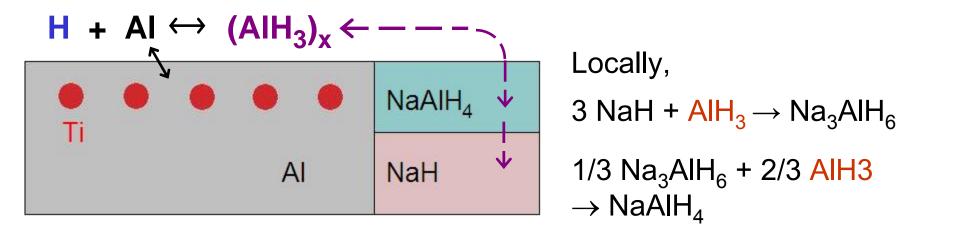
 $Na_3AIH_6 \leftrightarrow 3 NaH + AIH_3 \leftrightarrow 3 NaH + AI + 3/2 H_2$ (oligomers)

The catalyst does not enter the bulk (energetically unfavorable), but acts as a hydrogen dissociation-recombination site near the surface.

Dehydrogenation: The catalyst kinetically facilitates the release and decomposition of AlH₃ from solid-state alanates.

Hydrogenation: The catalyst helps the absorption of hydrogen and formation of AlH₃ on Al surfaces.

EXAFS Results of Ti-Activated NaAlH₄


The Ti atom is located on or near the surface surrounded by metallic AI. There is no long-range order, but probably with a local tetragonal symmetry similar to that of TiAI₃. The environment does not change with hydrogenation-dehydrogenation cycles.

The activity of Ti decreases as more crystalline TiAl₃ is formed.

J. Graetz et al., Appl. Phys. Lett. 85, 500 (2004); S. Chaudhuri et al., J. Am. Chem. Soc 128, 11404 (2006); C. P. Balde et al., J. Phys. Chem. C 111, 2797 (2007). Proposed Mechanism for Catalyst-Assisted Decomposition and Rehydrogenation of NaAlH₄

Dehydrogenation: The catalyst kinetically facilitates the release and decomposition of AIH_3 from solid-state alanates.

Hydrogenation: The subsurface Ti helps the adsorption of hydrogen on the AI surface. Atomic hydrogen extracts AI atoms directly from the surface (H etching) to create mobile AIH₃ monomers, which then condense into mobile alane oligomers that diffuse to the NaH region.

 H_2

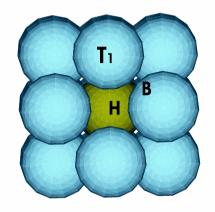
Consider the hydrogenation process first

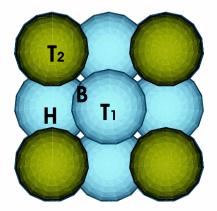
Does Ti affect H₂ dissociation on Al surface? YES (from DFT calculations)

 H₂ dissociation on a clean Al surface: Not energetically favorable

H₂ dissociation on a Ti-modified Al surface:

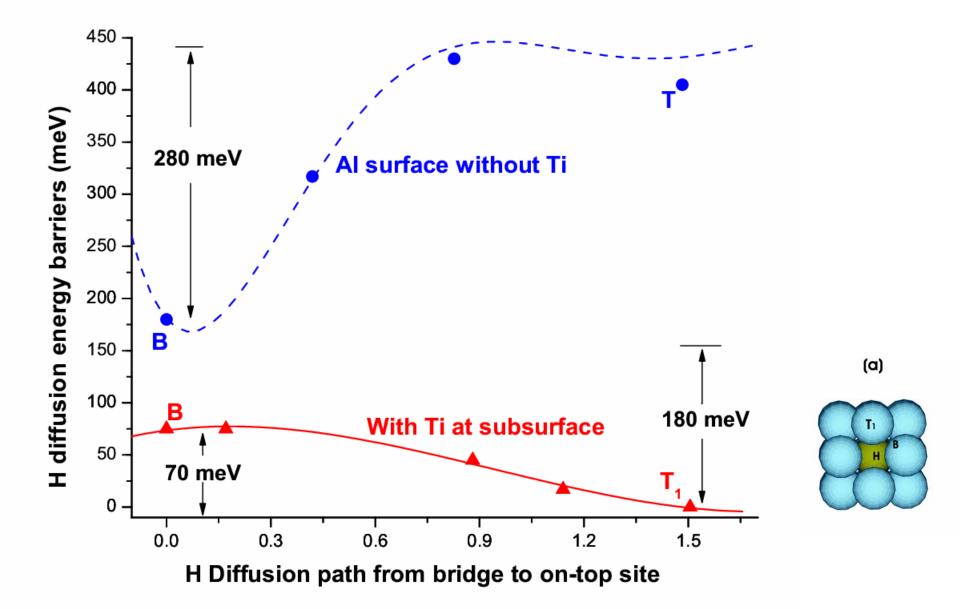
Energy of H(ad) is lowered by a few tenths of eV


Subsurface Ti enhances H binding on the surface


(a)

H positions

- T_1 : on top of Al
- B : bridge
- H : hollow
- T₂ : on top of Ti


$E_{ads}(H) = E(slab+H) - E(slab) - 1/2 E(H_2)$

(eV/surface cell)

Energy of H(ad) is lowered by a few tenths of eV.

	(a)	(b)	AI(001)
T ₁	-0.06	1.50	0.35
В	0.01	0.85	0.12
н	0.59	0.71	0.52
T ₂		1.81	

Subsurface Ti improves H mobility on the surface

Effect of Subsurface Ti on Hydrogen Interaction on the AI(100) Surface

Main Results:

- Ti near the Al surface occupies subsurface sites (no activation center on the surface)
- Subsurface Ti reduces the H_2 dissociation energy barrier by $\sim 0.6~eV.$
- Subsurface Ti enhances H binding on the surface. (Energy of H(ad) is lowered by a few tenths of eV.)
- Subsurface Ti improves H mobility on the surface.

(STM expt.-- Atomic H extracts AI atoms directly from the surface forming alane oligomers.)

Future Work

 Further study of the near-surface alloying effect for other catalysts (Is the effect the same as Ti?)