

Non-photosynthetic Biohdyrogen – Overview of Options

Bruce E. Rittmann

Director of SCEB and

Regents' Professor of Environmental Engineering

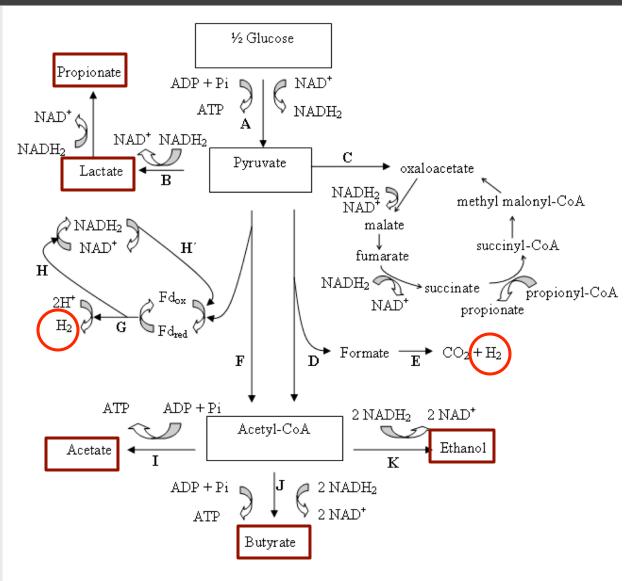
Swette Center for Environmental Biotechnology Biodesign Institute at Arizona State University

Rittmann@asu.edu http://eb.biodesign.asu.edu

I will overview three ways to produce renewable bio-H₂ from biomass.

I view this as "indirect" photosynthetic bio-H₂, since the biomass ultimately came from photosynthesis.

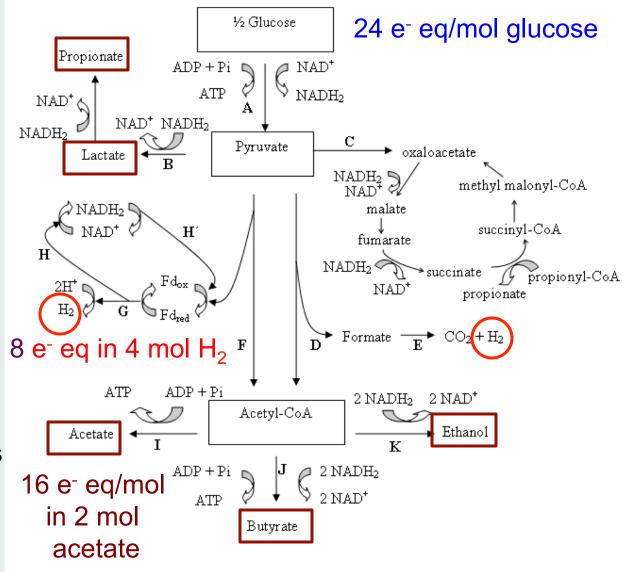
1 Fermentation


- Sometimes called "dark fermentation"
- Has a very long history
 - Technology is mature, at least for fermenting sugars
 - Advantages and disadvantages are well established

Metabolic steps in mixedacid glucose fermentation. Fd: ferredoxin, Fd_{ox} : oxidized form of ferredoxin, Fd_{red} : reduced form of ferredoxin. NADH₂: NADH + H⁺.

 H_2 is produced only from oxidations of Fd_{red} (main source) and formate.

All electron equivalents that go to acetate, ethanol, butyrate, lactate, or propionate are lost for bio- H_2 .



The need to balance $NADH_2$ among oxidation and reduction reactions means that the mix of products contains mostly non-H₂ sinks.

The maximum H₂ yield is 4 molH₂/mol glucose: $C_6H_{12}O_6 + 2H_2O \rightarrow$ $2CH_3COOH + 4H_2 + 2CO_2$

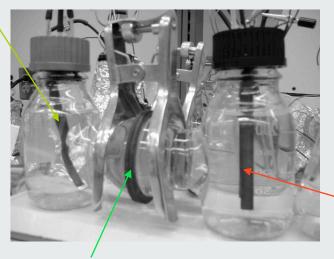
17% of donor electrons ending up in H_2 (2 mol H_2 / mol glucose) is accepted as the practical maximum H_2 yield. Actual H_2 conversions often are less.

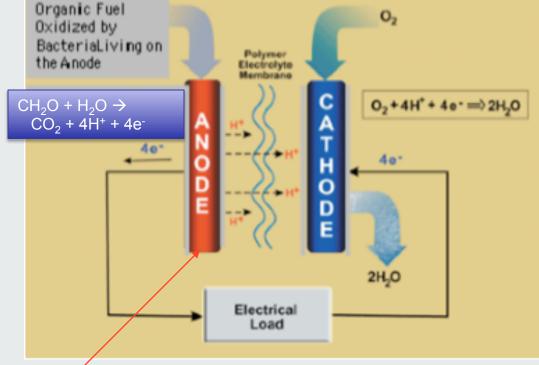
Clostridium species usually are the dominant H₂-producers in acetate/ butyrate fermentation, while *Ethanoligenens* species are abundant H₂ producers in acetate/ ethanol fermentation.

pH 5-6 generally results in acetate/butyrate formation and pH 4.5 in acetate/ ethanol.

- Advantages of Fermentative BioH₂:
 - Mature, at least for sugars
 - High volumetric rates (up to 8 L $H_2/L-h$)
 - Simple bioreactor configuration
 - More complex biomass can be fermented
- Disadvantages of Fermentative BioH₂:
 - Low H_2 yield
 - Not pure H_2 in the evolved gas
 - High BOD liquid effluent
 - It needs a follow up step.....

2 Microbial Electrolysis Cells (MECs)

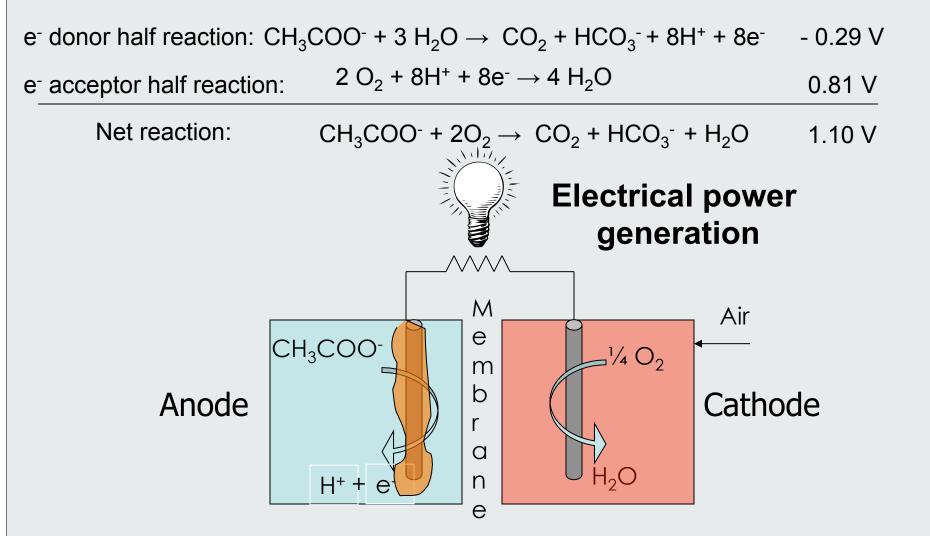

- Within the platform of Microbial Electrochemical Cells (MXCs), also sometimes called BioElectrochemical Systems (BES).
- The microbial fuel Cell (MFC) is the most well-known variation and a good place to begin to understand the platform.


MFC illustrated

The goal is to harvest the electrical power: P = IV

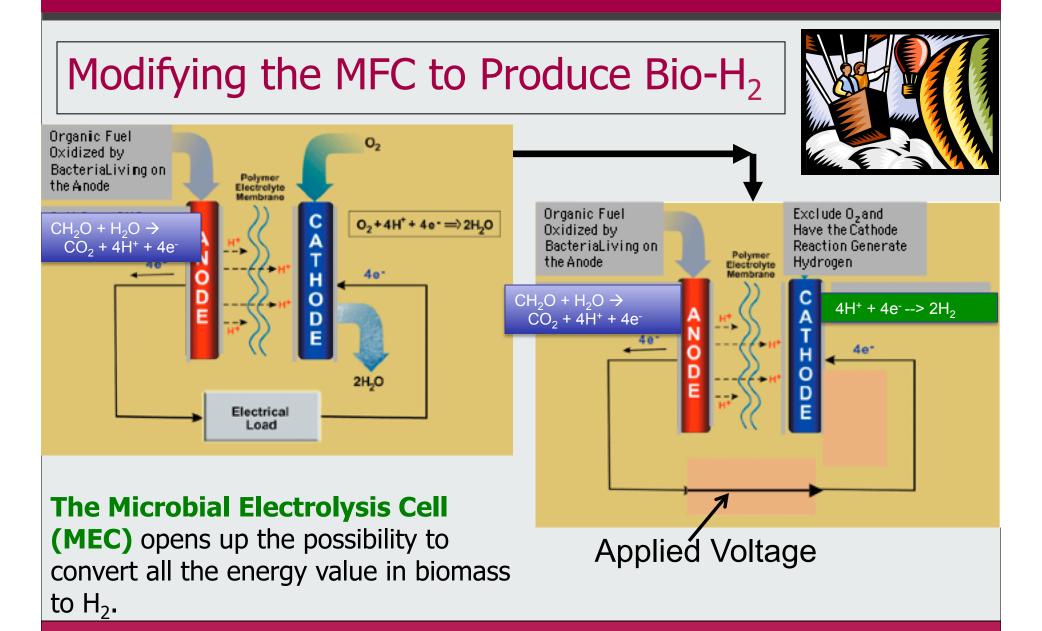
Cathode

PEM



Bioelectric

power generation

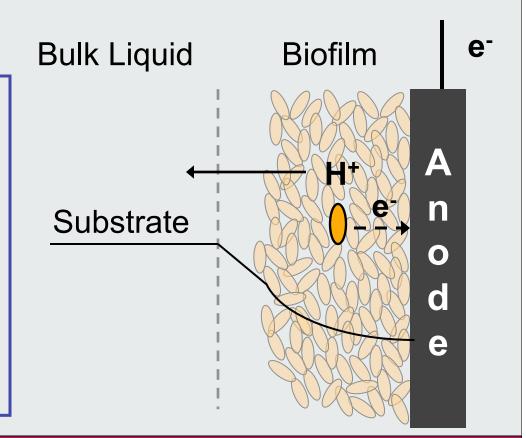

Anode, usually a graphite rod, paper, or mesh With a biofilm of anode-respiring bacteria (ARB)

The reaction potential drives all biological, chemical, and electrochemical processes in MFC => typical recovered potentials are 0.3 - 0.6 V

The MEC makes biohydrogen production a respiratory process!


Anode Respiration

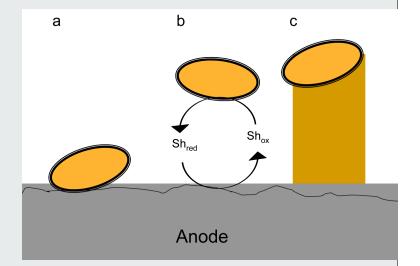
- Oxidation of an organic fuel, or electron donor: e.g.,
 - $-CH_3COOH + 2H_2O --> 2CO_2 + 8H^+ + 8e^-$
- By anode-respiring bacteria (ARB) that
 - have the ability to transfer e⁻ to the solid conductive surface and conserve energy → anode respiration
 - sometimes given other names: e.g., electricigens and exo-electricigens



Processes that can limit current production

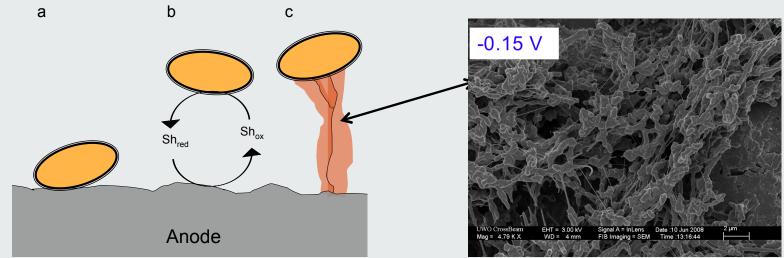
Substrate + $H_2O \rightarrow CO_2 + 8H^+ + 8e^-$

- 2. Substrate diffusion
- 3. e⁻ transport (potential driven)
- 4. H⁺ transport (pH and buffering)



Extracellular Electron Transport (EET)

Three mechanisms are proven.


- a) Direct transfer from the membrane-bound cytochromes to the anode.
- b) Soluble electron shuttles.
- c) Conduction through the matrix of the biofilm.

With conduction, the biofilm matrix is part of the anode: hence, the biofilm anode, a living, self-generating anode!

- Although EET can occur by three mechanisms, only conduction is fast enough to yield the observed rates of current density in modern MXCs (~ 10 A/m²). Other mechanisms are roughly 100X slower, at best.
- Good ARB produce a conductive network, perhaps using nanowires or pili.

Anode respiration with cathode reduction to H₂ provides benefits:

- Approaching 100% conversion of biomass electron equivalents to H_2 due to respiration.
- Nearly 100% pure H₂ once water vapor is removed.
- Can produce a low-BOD effluent.

Drawbacks:

- Still "emerging"
- Applied potential creates an energy cost
- Capital costs of electrodes, membranes, controls
- Probably needs pre-fermentation to convert complex biomass organics to simple substrates that ARB use.....

3 Methanogenesis Followed by Reforming

- Methanogenesis is mature and can get about the same conversion efficiency as an MEC
- Reforming CH₄ is now a mature technology and relatively inexpensive

Non-photosynthetic Biohdyrogen – Overview of Options

Bruce E. Rittmann

Director of SCEB and

Regents' Professor of Environmental Engineering

Swette Center for Environmental Biotechnology Biodesign Institute at Arizona State University

Rittmann@asu.edu http://eb.biodesign.asu.edu