

... for a brighter future

H₂ **Internal Combustion Engine Research** Towards 45% efficiency and Tier2-Bin5 emissions*

Project ID: ACE_09_Wallner

Thomas Wallner Argonne National Laboratory

2009 DOE Merit Review Washington, D.C.

May 19th 2009

DOE-Sponsor: Gurpreet Singh

* This presentation does not contain any proprietary, confidential, or otherwise restricted information

A U.S. Department of Energy laboratory managed by The University of Chicago

Overview

Timeline

Project start:Project end:

2005 Ongoing project

Budget

Funding in FY08: 400k\$
Funding in FY09: 500k\$
Funding for FY10: 840k\$ request

Barriers

- Understand and optimize hydrogen direct injection engine operation
- Evaluate in-cylinder emissions reduction techniques
- Improve injector design

Partners

Collaborators: Ford, Sandia
Potential partner: BMW
Injector supplier: Westport

Objectives

- Overcome the trade-off between engine efficiency and NOx emissions in hydrogen direct injection (DI) operation
- Evaluate the NOx emissions reduction potential of in-cylinder measures (e.g. water injection, EGR) in hydrogen DI operation
- Assess the impact of injector nozzle geometry and injector orientation and design optimized configurations
- Investigate the potential of multiple injection strategies

Milestones

- Correlation between OH* intensities from endoscopic measurement and NOx emissions established (02/2008)
- Comparative study of central versus side injector location completed (05/2008)
- Influence of injector jet direction analyzed for single and multiple injection cases (07/2008)
- Water injection demonstrated as an effective technique for NOx emissions reduction (09/2008)
- 3-D CFD simulation useable for optimization (03/2009)
- Evaluation of NOx emissions reduction potential of exhaust gas recirculation (expected 05/2009)
- Implementation of piezo-actuated hydrogen DI injectors (expected 07/2009)

Technical accomplishments/progress/results Overview

Improve injector design

Single-hole nozzle injector tested to evaluate injection direction for single and multi-pulse injection

Understand and optimize H₂ DI

3-D CFD simulation integrated to support data analysis and development of advanced configurations

In-cylinder emissions reduction

- Water injection study to establish basis for exhaust gas recirculation (EGR) tests completed
- EGR system for uncooled and cooled testing integrated

Single-hole nozzle design Simple configuration with great flexibility

Motivation to test single hole nozzle

- Easy to machine
- No jet-to-jet interaction
- Useable in central and side injector location
- Basic understanding of jet penetration

Tests performed (central injection)

- Single injection with variation of Start of Injection (SOI) Injection Angle
- Multiple injection with variation of Injection Angle Fuel split between injections

Multiple injection strategies Overview of injection strategies

	BDC IV		íC			TDC	
PFI	Injection				1		Low Load
(homogeneous)	Injection					2	High Load
Early DI			Injection				Low Load
(homogenous)			Inject	ion		1	High Load
Late DI					Injection	8	Low Load
(stratified)					Injection	1	High Load
Multiple DI			Injection		and the second se	Injection	Low Load
(after spark)			Injection			Injection	High Load
Multiple DI			Injection			njection	Low Load
(before spark)			Injection			Intection	High Load

- PFI used as early baseline
- Early DI low emissions at low load
- Late DI reduced emissions at high load
- Multiple injection reduced emissions and peak pressure at high load

Single injection at high engine load 4% efficiency change with angle – Late SOI reduces NOx

Single injection at low engine load 5% efficiency change with angle – SOI dominant for NOx

Merge experiment with simulation 3-D CFD results using a commercial code

Motivation to 3-D CFD simulation

- Further insight into the mixture formation process
- Straightforward validation of 3D-CFD simulation using data from Sandia National Laboratory
- Support development and optimization of advanced mixture formation concepts

Approach

- Use detailed grid and experimental data to correctly simulate gas exchange (once for each load point)
- Switch to reduced grid for compression and injection process
- Use reduced grid for variation calculations

Multiple injection operation Angle impacts efficiency – Ratio reduces NOx up to 95%

Multiple injection operation Hypothesis for NOx emissions reduction

Secondary injection

- Occurs during combustion
- Hydrogen burns at stoichiometric air/fuel ratio avoiding NOx critical regime (0.5<Φ<1)

Primary injection

Very low NOx emissions if air/fuel ratio of primary pulse is lower than 0.5

Water injection Setup and strategy

Water injection at medium engine load Comparison of effectiveness with spark retard

Water injection

40% NOx emissions reduction with 0.4% efficiency loss

Spark retard

25% NOx emissions reduction with
 1.3% efficiency loss

Water injection at high engine load Emissions reduction potential and impact on combustion

Combustion with water injection

Water injection reduces peak heat release rate, therefore temperatures and NOx emissions

Water injection

55% NOx emissions reduction with 0.8% efficiency loss

Exhaust gas recirculation Setup complete and tests in progress

Exhaust gas recirculation

- Setup using automotive EGR valve
- Intake and exhaust pressure individually adjustable
- Integrated automotive EGR cooler

Approach

- Evaluate EGR rate determination strategies in hydrogen operation
- Assessment of impact of EGR rates and temperatures on
 - NOx emissions
 - Engine efficiency
 - Combustion stability

Future work

- Complete assessment of exhaust gas recirculation for NOx emissions reduction
- Implement and test piezo-driven hydrogen DI injectors at elevated engine speeds (single and multiple injection)
- Upgrade research engine to optimized bore/stroke ratio
- Expand hydrogen combustion strategy development to a 'Dieselstyle' combustion chamber with flat cylinder head and piston bowl

Summary

- Engine efficiency and NOx emissions is very sensitive to mixture formation strategy, in particular injector design, location, as well as injection strategy
- 3-D CFD simulation and optical engine work are ideally suited to provide further understanding of hydrogen mixture formation processes
- Multiple injection as well as water injection can significantly reduce NOx emissions at high efficiency levels
- Future work will focus on exhaust gas recirculation, integration of higher flow, piezo activated injectors and assessment of Diesel-style combustion chamber design

