Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine Combustion Research

Joseph C. Oefelein

Combustion Research Facility Sandia National Laboratories Livermore, California 94550

Tuesday, May 19, 2009

Project ID: ace_07_oefelein

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project provides fundamental research that supports advanced engine development projects
- Focused on application of next generation simulation capabilities
- Project scope, directions and continuation evaluated annually

Budget

 Project funded by DOE/OVT: FY08 – \$450K
FY09 – \$450K

Barriers

Barriers addressed

- Development of validated, predictive, multi-scale models with emphasis on:
 - Clean high-efficiency engines using hydrocarbon based fuels (petroleum and non-petroleum) and hydrogen
 - Advanced LTC technologies (i.e., understanding effects of fuel-injection, air-motion, ignition-timing, heat-transfer and engine-geometry on fuel-air mixing, combustion, and emissions over a range of regimes)
- Advanced simulations of in-cylinder processes will provide insights into:
 - Effects of fuel injection and engine geometry on mixing, combustion, emissions
 - Effects of timing, load, engine speed, heat transfer on mixture preparation
 - Tolerance of combustion to high EGR and mechanisms for controlling ignition timing, etc., ...

Partners

- PI's in the Engine Combustion Group at Sandia with emphasis on establishing benchmark simulations of optical engine experiments
- Project lead: Joe Oefelein

High-performance computing (HPC) provides new opportunities for advances in modeling, simulation

- <u>Project objective</u>: Combine three unique capabilities to maximize benefits of HPC for advanced engine combustion research
 - Established theoretical-numerical framework
 - Specialized massively-parallel code
 - Access to "capability-class" computers
- Provides strong link between DOE <u>Office of Science</u>, related HPC systems and <u>Office of Vehicle Technologies</u>
- Awarded INCITE* grant for computer time directly related to this project entitled:
 "<u>High-Fidelity Simulations for Clean and</u> <u>Efficient Combustion of Alternative Fuels</u>"
 - Multiyear CPU allocations for IC-engine related research on the Oak Ridge National Laboratory CRAY XT Platforms
 - 18-million hours in 2008 (32,000 cores)
 - 30-million hours in 2009 (180,000 cores)
 - Hours in 2010 to be determined
 - Requires scaling to O(100,000) cores

Jaguar is the most powerful computer system for science with world leading performance. The new 1.64-petaflop Cray XT system (Jaguar) has over 180,000 processing cores. Image courtesy of the National Center for Computational Sciences, Oak Ridge National Laboratory.

*Innovative and Novel Computational Impact on Theory and Experiment

Theoretical-Numerical Framework (A General Solver Optimized for LES)

- Theoretical framework
 - Fully-coupled, compressible conservation equations
 - Real-fluid equation of state (high-pressure phenomena)
 - Detailed thermodynamics, transport and chemistry
 - Multiphase flow, spray
 - Dynamic SGS modeling (no tuned constants)
- Numerical framework
 - All-Mach-number formulation
 - Non-dissipative, conservative
 - Complex geometry
 - Adaptive mesh (ALE)
 - Massively-parallel (MPI)
- Extensively validated, ported to all major platforms

CRE

Oefelein, J. C. (2006). Large eddy simulation of turbulent combustion processes in propulsion and power systems. *Progress in Aerospace Sciences*, 42: 2-37.

Theoretical-Numerical Framework (A General Solver Optimized for LES)

- Theoretical framework
 - Fully-coupled, compressible conservation equations
 - Real-fluid equation of state (high-pressure phenomena)
 - Detailed thermodynamics, transport and chemistry
 - Multiphase flow, spray
 - Dynamic SGS modeling (no tuned constants)
- Numerical framework
 - All-Mach-number formulation
 - Non-dissipative, conservative
 - Complex geometry
 - Adaptive mesh (ALE)
 - Massively-parallel (MPI)
- Extensively validated, ported to all major platforms

- Strong (fine-grain) scaling attributes exhibited on the ORNL NCCS CRAY XT4 (Jaguar)
- Weak (coarse-grain) scaling on 150,000 cores being benchmarked as part of DOE "Joule Code Metric"

CRE

- Combine state-of-the-art LES with existing expertise in optical engine experiments
 - <u>High-fidelity</u> simulations that identically match geometry, etc.
 - Computational benchmarks that complement experimental data
- Adhere to strict algorithmic, model implementation and grid resolution requirements
 - Non-dissipative spatial stencils, no explicit artificial dissipation
 - High-quality hex-grids, minimal stretching and cell deformation
 - Detailed high-level models for SGS closure
- Enhance investment in experiments by providing additional source of detailed quantitative information
 - Move beyond current simulation approaches and constraints
 - Provide fundamental insights not available anywhere else
 - Establish foundation for advanced model development

Milestones

- Develop improved high-pressure multiphase models for timeaccurate treatment of direct-injection processes
 - Initial emphasis on high-pressure hydrogen injectors, model validation using data from Petersen and Ghandhi (U. Wisconsin)
 - Direct applicability to liquid hydrocarbon injectors (collaboration with Musculus, Pickett (www.ca.sandia.gov/ECN))
- Perform high-fidelity simulations of optical H₂-ICE (Kaiser et al.)
 - Validation through comparison of measured, modeled results
 - Chemiluminescence Imaging and Particle Image Velocimetry (PIV)
 - Planar Laser Induced Fluorescence (PLIF)
 - Detailed analysis of in-cylinder direct-injection mixing and combustion processes (3D dynamics)
- Systematically extend to HCCI engine experiments (Dec et al.)
 - Detailed studies of low temperature combustion processes
 - Treatment of complex hydrocarbon processes

CRF Optically Accessible Hydrogen-Fueled IC-Engine

Engine Specifications

Compression Ratio	9 – 12
Bore	92 <i>mm</i>
Stroke	85 mm
Peak Turbulence Intensity	2.85 <i>m/</i> s
Integral Length Scale	2 <i>mm</i>
Thermal Layer Thickness	6.3 µm
Kolmogorov Length Scale	5.6 µm
Reaction Zone Thickness	3.9 µm
Turbulent Reynolds Number	2550

Inflow Detailed treatment of geometry and Boundary operating conditions (including high-pressure injector) **Exhaust Time-Varying Body-Fitted Multiblock Grid** 0 **High-Pressure** Intake Injector **Critical Grid Surfaces** CRE

High-fidelity models for treatment of transient high-pressure injection processes

Available Data:

- Schlieren visualizations and corresponding penetration data
 - H₂ injected into quiescent chamber of N₂ or CO₂
 - Injection pressures of 52 and 104 bar
 - Chamber densities of 1.15 to 12.8 kg/m³
- Parametric study using 3, 7, 9, 13 hole injectors, 36 cases total

Objectives:

- <u>Systematic validation</u>: Investigate issues related to initial transients and requirements for in-cylinder calculations
- Establish appropriate resolution criteria and time-dependent boundary conditions
- 1. B. R. Petersen and J. B. Ghandhi (2006). Transient high-pressure hydrogen jet measurements. *SAE Transactions, Volume 115* (Paper 2006-01-0652, SAE World Congress, April 3-6, Detroit, Michigan)
- 2. B. R. Petersen (2006). Transient high-pressure hydrogen jet measurements. *Masters of Science in Mechanical Engineering*, University of Wisconsin-Madison

Computational Domain and Boundary Conditions (3-Hole Injector)

Cross-section of 3D grid

- Injector mounted at head-end
- Outer shaft diameter: 7.5 mm
- Chamber size 750L x 300D mm
- Resolution for wall-resolved LES
 - 1-million cells per injector orifice
 - 3.5-million cells in chamber
 - Optimal stretching
- Initial conditions
 - Injector: H₂ at 10.4 MPa and 298 K
 - Chamber: N₂ at 101, 336, 722 kPa and 298 K
- Detailed thermodynamics and transport
- 50,000 100,000 CPU hours per case on CRAY XT platforms

Good agreement with penetration data and shadowgraphs, detailed treatment of turbulence

Analysis of In-Cylinder Flow Dynamics

Animation

Comparisons with PIV Data

Instantaneous velocity field from LES showing out of plane components (-60 CAD BTDC)

- Goals:
 - Validation using available data
 - Study 3D dynamics throughout domain using validated solution
 - Extract information that cannot be measured (i.e., physics, models)
- Issues:
 - Boundary conditions applied with one-to-one correspondence
 - Spatial resolution of PIV and LES results must match (i.e., be filtered with identical cutoff values)
 - Consider only planar components (neglect out of plane component)
 - Converged phase-locked statistics (mean, RMS, higher-order moments)

Comparisons with PIV Data

Toward HCCI and Diesel Engines ...

High-Pressure Hydrocarbon Mixtures 1400 1200 1000 Density, kg/m³ 800 600 Critical Point = 400 atm 400 10 50 200 0 10^{2} Temperature, K

Detailed Thermodynamics and Transport for

٠

J.C. Oefelein (2009). General package for evaluation of multicomponent real-gas and liquid mixture states at all pressures. SAND report in print.

- Transient Injection with Emphasis on Entrainment
 - Collaboration with Bing Hu (new LES postdoc from U. Wisconsin) and Mark Musculus
- Grid Development for Analysis of CRF Optical/Metal HCCI Engines (Dec et al.)

CRE

Future Work

- Continue high-fidelity simulations of optical H₂-ICE
 - Detailed analysis of in-cylinder direct-injection processes
 - Validation through comparison of measured, modeled results
 - Joint analysis of data from validated simulations
- Systematically extend to HCCI engine experiments
 - Detailed studies of low temperature combustion processes
 - Treatment of complex hydrocarbon processes
- Continue canonical calculations of direct-injection processes for high-pressure, low-temperature engine applications
 - Collaboration with Musculus, Pickett's "Engine Combustion Network" for validation (www.ca.sandia.gov/ECN)
- Continue leveraging between DOE Office of Science and Energy Efficiency and Renewable Energy activities
 - Access to DOE high-performance "capability-class" computers
 - Development and validation of turbulent combustion models

- Project provides significant link between DOE Office of Science and Office of Vehicle Technologies
 - Objective: Merge state-of-the-art LES capability with key experiments
 - Benefits: Moves beyond current models, additional source of detailed data
 - Focus: Barriers related to both <u>Advanced Engine R&D</u> and <u>Development of</u> <u>Advanced Simulation Capabilities</u> using high-performance computing
- Four major accomplishments since last review
 - INCITE grant on DOE capability class computers (30-million CPU hours)
 - Developed and validated detailed model for high-pressure fuel injection
 - Detailed simulations of H₂-ICE, comparisons with experiments ongoing
 - Detailed analysis of transient injection and entrainment processes
- Have begun to establish technology transfer through collaborations with industry and academia with emphasis on
 - Developing a validated suite of benchmark simulations and sub-models
 - High-pressure phenomena (chemistry, thermodynamics, transport ...)
 - Multiphase flow and combustion (atomization, jet breakup ...)
 - Clean and efficient combustion of alternative fuels ...

