

Hydrogen from Diverse Domestic Resources

Hydrogen Production and Delivery

Hydrogen Delivery Workshop

Office of Hydrogen, Fuel Cells, and Infrastructure Technologies

May, 2003

U.S. Energy Dependence is Driven By Transportation

- Two-thirds of the 20 million barrels of oil Americans use each day is used for transportation
- America imports 55 percent of the oil it consumes, that is expected to grow to 68% by 2025.
- Nearly all of our cars and trucks run on gasoline or diesel.

Develop and validate fuel cells and hydrogen production, delivery, and storage technologies for transportation and stationary applications.

- Dramatically reduce dependence on foreign oil.
- Promote the use of diverse, domestic, and sustainable energy sources.
- Reduce carbon and criteria emissions from energy production and consumption
- Increase the reliability and efficiency of electricity production by utilizing distributed fuel cells

The Roadmap

- Identifies the "challenges" and "path forward" to realizing vision of a Hydrogen Economy
 - System Integration
 - Production
 - Delivery
 - Storage
 - Conversion
 - > Applications
 - Education and Outreach
- Secretary Spencer Abraham announced release of the final report in November, 2002

President Bush Announces Accelerated Hydrogen and Fuel Cell Initiative

"Tonight I'm proposing \$1.2 billion in research funding so that America can lead the world in developing clean, hydrogen-powered automobiles... With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom, so that the first car driven by a child born today could be powered by hydrogen, and pollution-free."

- President Bush, January 28, 2003, State-ofthe-Union Address

FreedomCA

The Fuel Initiative and FreedomCAR

- Fuel Initiative
 - Development of low-cost hydrogen production, delivery, and storage technologies
- FreedomCAR
 - Development of low-cost fuel cells and hybrid component technologies
- Both initiatives directly address energy security
- Both initiatives include DOE partnerships with industry
- President Bush's request commits \$1.7 billion over 5 years
 - \$1.2 billion for hydrogen and fuel cells
 - \$720M in new money
 - \$0.5 billion for hybrid and vehicle technologies
- Enables industry commercialization decision by 2015

Fuel Cell Vehicles in the Showroom and Hydrogen at Fueling Stations by 2020

Hydrogen, Fuel Cells and Infrastructure Technologies Program *Steve Chalk, Program Manager* Tia Alexander, Administrative Support

Technology Validation Manager - Sigmund Gronich Education and Outreach - Christy Cooper Safety and Codes/Standards - Neil Rossmeiss

Hydrogen Production and Delivery

Peter Devlin

Mark Paster Chris Bordeaux Roxanne Danz Matt Kauffman Arlene Anderson

Hydrogen Storage

JoAnn Milliken

Lucito Cataquiz 1-2 Vacancies Fuel Cells

Patrick Davis

Donna Ho Valri Lightner John Garbak Kathi Epping Nancy Garland

OHFIT

- Advanced production technologies
- Advanced hydrogen storage technologies (carbon, hydrides, etc.)
- Safety, performance & connectivity standards for hydrogen fueled devices
- Integrated fuel cell vehicle and hydrogen infrastructure technology validation
- Fuel cell stack component cost reduction (catalyst & membrane) and stationary systems development

Major Activities	FY02 Approp.	FY03 Request	FY04 Request
Hydrogen Production & Delivery	\$11M	\$12M	\$23M
Hydrogen Storage	\$6M	\$11M	\$30M
Safety, Codes & Standards, Education	\$6M	\$6M	\$22M
H2 Infrastructure/FC Vehicle Demo	\$6M	\$12M	\$28M
Fuel Cell Systems & Components	\$47M	\$56M	\$62M
TOTAL	\$76M	\$97M	\$165M

- EERE
 - Office of Hydrogen, Fuel Cells, and Infrastructure Technologies Program
 - Office of Vehicle Technologies Program
 - Biomass, Solar, and Wind Programs
- Fossil Energy
 - Coal
 - Natural Gas
 - Natural Gas Pipelines
- Nuclear Energy
- Office of Science

Extending Collaborations

- Other Federal Agencies
 DOT, EPA, Others
- International Collaborations

Hydrogen Production

Hydrogen from Diverse Domestic Resources

Production Strategies/Creating Options (Under development with stakeholders)

- Multiple feedstocks
- End Game
 - Fossil (coal, NG) with sequestration
 - Renewable Feedstocks: Biomass and derivatives, water
 - Renewable/non-carbon emitting energy use: Biomass, wind, solar, nuclear, hydro, geothermal
 - Central and distributed production are likely
- Transition
 - Distributed production (NG, Electrolysis, Biomass derivatives)
 - Central production as risk is reduced

Short Term

- Distributed: NG, Liquids (including biomass derivatives), Electrolysis
- Central NG, Coal and Biomass
- Renewable Power: Wind, Solar, Hydro, Geothermal
- Central Coal with Sequestration and Biomass
- Photolytic: Photovoltaics, Photosynthetic organisms
- Water Splitting Cycles: Nuclear and Solar

Long Term

• Improve the efficiency and reduce the cost of distributed production of hydrogen from natural gas and liquid fuels.

FreedomCAR Target-70% energy efficiency well-to-pump; cost of hydrogen equivalent to gasoline **(\$1.50/kg)** by 2010.

• In collaboration with the Office of Fossil Energy, develop advanced reforming, shift, separations and purification technology for hydrogen production.

By 2015 develop technology to produce hydrogen in a centralized coal based operation for \$.79/kg at the plant gate with carbon sequestration.

Develop advanced OTM, HTM, technology, advanced reforming and shift technology for application to central fossil (with sequestration), central biomass and distributed production of hydrogen.

U.S. Department o

Energy Effic

• Develop advanced low cost technologies for producing hydrogen from biomass (gasification/pyrolysis, fermentation).

Demonstrate technology that projects to \$2.60/kg of hydrogen by 2010 with the long term goal of being competitive with gasoline.

• Develop advanced renewable photolytic hydrogen generation technologies.

By 2015 demonstrate biological technology that projects to a cost of \$10/kg at the plant gate and photoelectrochemical technology that projects to \$5/kg at the plant gate.

• Develop highly efficient and lower cost water electrolyzer systems capable of producing 5000 psi of compressed hydrogen at \$300/ kWe at 240 kg/day by 2008 at \$2.50/kg of hydrogen.

• Research and develop high and ultra-high temperature processes to produce hydrogen through chemical cycle-water splitting technology or other non-carbon-emitting technology utilizing heat from nuclear or solar sources.

By 2015, demonstrate technology that is competitive with gasoline.

Energy Effic

Develop *hydrogen fuel delivery* technologies that enable the introduction and long-term viability of hydrogen as an energy carrier for transportation and stationary power.

Delivery Options

- End Game
 - Pipeline Grid
 - Other as needed for remote areas
 - Breakthrough Hydrogen Carriers
 - Truck: HP Gas & Liquid Hydrogen
 - Electrolysis and Distributed reforming of NG, Renewable Liquids (e.g. ethanol etc.)
- Transition
 - Electrolysis and Distributed reforming of NG, Renewable Liquids (e.g. ethanol etc.)
 - Truck: HP Gas & Liquid Hydrogen
 - Regional Pipeline Grids
 - Breakthrough Hydrogen Carriers

Delivery

Key Challenges

- Pipelines
 - Retro-fitting existing NG pipeline for hydrogen
 - Utilizing existing NG pipeline for Hythane
 - New hydrogen pipeline: lower capital cost
- Lower cost and more energy efficient compression technology
- Lower cost and more energy efficient liquefaction technology
- Novel solid or liquid carriers

Objectives

- By 2006, define a cost effective and energy efficient fuel delivery infrastructure for the introduction and long-term use of hydrogen for transportation and stationary power.
- By 2010, develop enabling technologies to reduce the cost of hydrogen fuel delivery from central/semi-central production facilities to the gate of refueling stations and other end users to <\$0.70/kg.
- By 2010, develop enabling technologies to reduce the cost of hydrogen movement and handling within refueling stations and stationary power facilities to a vehicle or stationary power unit to <\$0.60/kg.
- By 2015, develop enabling technologies to reduce the cost of hydrogen fuel delivery from the point of production to the point of use in vehicles or stationary power units to <\$1.00/kg in total.

Key Delivery Milestones

• 2Q 2005: Complete definition of a cost effective hydrogen fuel delivery infrastructure for the introduction and long term use of hydrogen for transportation and stationary power

U.S. Department Energy Effic

ble Energy

- 4Q 2008: Verify 20% cost reduction for hydrogen compression
- 4Q 2010: Verify 50% cost reduction for hydrogen liquefaction
- 4Q 2010: Verify 50% reduction in capital cost for hydrogen pipelines

Characteristics	Units	2003 status	2005	2010		
Gaseous Hydrogen Compression						
Cost	\$/kg H ₂	0.18	0.17	0.14		
Energy efficiency	%	90	92	95		
Hydrogen Liquefaction						
Cost	\$/kg H ₂	1.11	1.01	0.53		
Energy efficiency	%	65	70	87		
Hydrogen Gas Pipelines						
Trunk lines	\$/mile	1.4M	1.2M	600k		
Distribution lines ^d	\$/mile	600k	500k	350k		
Hydrogen Carrier Technology						
Hydrogen Content	% by wt	3	6.5	10		
Energy efficiency	%	80	82	85		