

Novel Stack Concepts: Patterned Aligned Carbon Nanotubes as Electrodes in MEAs

Di-Jia Liu

Chemical Engineering Division Argonne National Laboratory

Presentation at Fuel Cell Kickoff Meeting U. S. Department of Energy, Washington D. C. February 13-14, 2007

This presentation does not contain any proprietary or confidential information

CHICAGO

A U.S. Department of Energy laboratory managed by The University of Chicago

Objective

- To develop a novel aligned carbon nanotube (ACNT)-based membrane electrode assembly and fuel cell with:
 - improved efficiency
 - reduced Pt usage
 - simplified stack design
- Topic 5A Innovative Stack Concepts
- \$ 500 K per year for 2 years

Relevance to FreedomCAR & Fuel Technical Barriers & Targets

This project addresses the following technical barriers:

A. Durability

Replace amorphous carbon with more chemically inert graphitic ACNT

B. Cost

- Reduce or replace Pt with built-in transition metal catalytic site
- Eliminate GDL and simplify bipolar plate design with 3-D ACNT "carpet"

C. Performance

Improve fuel utilization and conductivity through novel nano-architecture

D. Water Transport & Thermal Management

Improve water/mass transport and thermal conductivity through patterned nanotubes with micrometer-dimension flowfield

This project addresses the following technical targets for MEA:

MEA Cost: \$10/kW

Durability: 5000h @ 80°C

Technical Approach

Concept of Aligned Carbon Nanotubes (ACNT) as MEA for PEFC

Conventional MEA

Advantage of ACNT MEA

- Better catalyst utilization
- Better support stability
- Better electrical & thermal conductivity
- Better humidity management
- Better mass transport
- Built-in catalytic activity through functionalized ACNT with potential to replace costly Pt/C

Technical Approach

Process of Fabricating ACNT as MEA for PEFC

Growing and Catalyzing ACNT

Forming MEA

Project Timeline

Gantt chart based on calendar quarters

Functionalize ACNT with Electrocatalytic Activity

Building ORR Active Site through TM & N-doping During CVD Process

ACNT without N-doping

ACNT with N-doping

Probing ORR Active Site Through X-ray Absorption Spectroscopy

Shell	N	R (Å)	σ^2
Fe-N	4.2	1.95	0.00001

ORR likely involves a redox process around active site –FeN₄-

Building Three-Dimensional ACNT/MEA

Key Milestones & Go/No-go Decision

- Demonstrate catalytically functionalized ACNT by completing development of two CVD catalyzing methods and two wet chemistry methods, followed by electrocatalytic activity and structural characterization – (Q1 FY08)
- Demonstrate the feasibility of ACNT based MEA by completing patterned layer preparation and membrane transfer technique development – (Q1 FY08)
- Demonstrate ACNT based PEFC by completing packaging method development and cell testing – (Q4 FY08)
- Complete feasibility analysis for material and engineering scale-up and documentation to DOE – (Q1 FY09)

A midterm go/no-go decision will be made at Q1 FY08 based on electrocatalytic performance against the benchmark and success of ACNT-MEA fabrication

Inputs/Needs

- We will seek industrial teams' input and guidance on the research direction through each phase of the project
- We will consult with the experts from fuel cell manufacturers and other labs during stack packaging and integration development
- If successful, we will search for industrial partnership to develop roadmap for potential technology transfer and commercialization

Argonne Team Members & Collaborators

- Junbing Yang
- Magali Ferrandon
- Suhas Niyogi
- Nancy Kariuki
- Jennifer Mawdsley
- Dennis Papadias

