DOE Hydrogen, Fuel Cells and Infrastructure Technologies 2007 Kickoff Meeting

Effects of Fuel and Air Impurities on PEM Fuel Cell Performance

Rod Borup Eric Brosha Fernando Garzon (PI) Bryan Pivovar Tommy Rockward Tom Springer Francisco Uribe Idoia Urdampilleta Judith Valerio Los Alamos National Laboratory

LANL Program Manager: Ken Stroh

Project Objectives

Overall Objective: Contribute to the understanding of the effects of fuel and air impurities on fuel cell performance

Specific Objectives:

Los Alamosos

•Test fuel cell performance under simulated multi-component hydrogen impurity gas mixtures

•Investigate effects of impurities on catalysts and other FC components

- •Understand the effect of catalyst loadings on impurity tolerance
- Investigate the impacts of impurities on catalyst durability
- •Develop methods to mitigate negative effects of impurities
- •Develop models of fuel cell-impurity interactions

•Collaboration with USFCC, Fuel Cell Tech Team, Industry and other National Laboratories to foster a better understanding of impurity effects

Technical Targets/Barriers

Near Term Targets:

- •5000 hrs durability
- 30\$/kW by 2010
- •55% energy conversion efficiency
- •0.3g/kW Pt loading

Barriers:

- •Electrode performance decreased by impurities(fuel cell efficiency decreases)
- •Higher Pt loading required to maintain performance in presence of impurities increases cost
- •Durability may decrease in the presence of impurities

Approach

Table II. Possible mechanisms of action of impurities

Approach

- Fabricate and operate fuel cells under controlled impurity gases
 - Multi-gas mixing manifolds and FC test stations
 - Pre-blend impurity gases
 - Measure performance
 - Understand degradation mechanisms
 - Study mitigation approaches
- Develop analytical tools for studies
 - Electroanalytical methods
 - In situ diagnostics
 - Sub PPM gas analysis
- Analyze and model data

Prior Work Air Impurities: Sulfur Dioxide Injection At The Cathode

- Constant current 0.6A/cm²
- 0.01mmols total injected for each run after humidification
- 50cm² cells 80°C

- The negative effect of 1.5 ppm SO₂ is more acute in dry air:
 SO₂ very soluble in H₂O
- Dry clean air does not affect performance at these conditions.

Sulfur Dioxide Injection At The Cathode

- Fuel cell operated in constant voltage mode of 0.5V
- 5 ppm of SO₂ injected after gas humidification
- CV to 1.4 V restores performance

Prior Work: Effect Of Cell Voltage on H₂S Anode Poisoning

Fuel Cell anode exposed to 2ppm H₂S for 1 hr
H₂S exposure occurs influences amount of performance loss and recovery rate

- •More poisoning at low cell voltages
- •More than a monolayer of S (2-3 layers) at low cell voltages

Air Effect on Anode Due To Shut-down

 $S_{p_{1}} + H_{2} \rightarrow H_{2}S \uparrow$

Possible mechanisms?

$$S_{Pt} + 3/2O_2 + H_2O \rightarrow HSO_{4aq}^- + H^+aq$$

Cleaning Impurities: Effect of OCV on Sulfur Poisoned Cathodes and Anodes

- Cells are poisoned for 50 min (2X amount of H₂S needed for full poisoning at 100% adsorption efficiency)
- The application of Open Circuit Voltage on S-poisoned electrodes indicates partial recovery

Los Alamos

Impurity Studies

Project initiated in FY2007 for 4 years

Particulate effects			Impurity Impacts on Durability Studies				
2007		007	2008	200)9	2010	
		Mitigation st	trategies				
	Impur	ty effects on	lecreased catalyst	Salt effects on membrane and GDL			
	loadings			Modeling Impurity interactions			

Milestones:

Q4-Report effects of aerosols on FC performance

Q8- Report effects of impurities on 2010 Pt loading targets

Q10-Develop mitigation strategies for impurities

Q12-Report effects of impurities on 2015 Pt loading targets

Q16-Develop fuel cell impurity model

Q16-Disseminate results of salt effects studies

Go No Go's:

Q4- If aerosol effects small then terminate research

Q8- If impurity tolerance for 2010 loadings are lower than current develop new level specifications

Q12- If salt effects on FC's are small then terminate research

Organization/Partners

- USFCC
- ASME
- ASTM
- SAE
- ISO
- FCTesQA
- OEMs
- Fuel Providers

Budget

DOE Cost Share	Recipient Cost Share	TOTAL
\$3,600,000	\$0	\$3,600,000
100%	0%	100%

- Duration 4 years beginning in FY07
- Subcontractors
 - None

