Advanced Integrated Electric Traction System

Greg S. Smith Email: gregory.3.smith@gm.com Phone: (310) 257-3812 Organization: General Motors

Team members: Ames Laboratory Arnold Magnetics AVX DuPont Infineon Oak Ridge National Laboratory

Project Duration: FY_'08_ to FY '11_

This presentation does not contain any

proprietary or confidential information

Office of Vehicle Technologies 2008 Annual Merit Review Meeting

Bethesda, Maryland February 25-28, 2008

1

Purpose of Work

- Develop and demonstrate advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power.
- Meet DOE 2015 Targets
 - ETS that can accommodate a variety of automotive platforms and the design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power.
 - The ETS is to cost no more than \$660 (55kW at \$12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters.
 - The cost target for the optional Bi-Directional AC/DC Converter is \$375.
 - The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C.
 - The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed.

Barriers

- Accurate Requirements
 - Increase fidelity over the duty cycle
 - Flow down system requirements to components
- Technologies
 - Thermal management
 - Need to improve performance over existing pin fin cooling without increasing cost
 - Switch technology
 - Temperature IGBT currently rated at 150°C usable, need >175°C
 - Module packaging will not meet cost or temperature requirements
 - Capacitor
 - Current high temperature dielectric materials too costly
 - Typical PP capacitor temperature ratings 85°C to 105°C, need to reduce exposure to temperature above 125°C for life
 - Capacitor with current high temperature materials is too large
 - Motor
 - Copper cost increasing
 - Laminations limit design flexibility to 2D
 - Housing mass too high
 - High rare earth magnet material cost
- Programmatic
 - Adoption of new technologies by suppliers
 - Sunk cost in other technologies/markets

Approach for FY'08

- Phase I Concept Design/Integration Study (10/7 to 7/08)
 - Define component specifications
 - Research new technologies from Universities, Government Labs, suppliers, and internal GM R&D
 - Evaluate topologies for efficiency, cost, complexity, and ability to support various vehicle implementations (e.g. PHEV, HEV, FCV,EV)
 - Down select and confirm technologies
 - Design Concept that meets FreedomCAR ETS Goals

Phase II Development/Demonstration (7/08 – 5/11)

Approach - Description of Technology

- Use technologies that are in various stages of development to produce an electric traction solution
 - Investigate a wide range of technologies
 - System integration
 - Advanced cooling technologies for motors and inverters
 - New alternative inverter topologies to minimize bus capacitance and inductors
 - Simplified interconnects
 - IGBT's and SiC Diodes
 - Gate drive and controllers
 - Capacitors
 - Bus structures
 - Housings
 - Magnets
 - Rotor and stator manufacturing processes
 - Confirm validity of emerging technologies
 - Integrate the valid technologies in a manner that supports a wide variety of applications (e.g. fuel cell, hybrids, electric, plug-ins)

Approach - Uniqueness of Project and Impacts

- Extensive systems analysis determine appropriate topologies and their applications, component optimization, and packaging flexibility
- Transition power electronics from an industrial drive based application to an automotive based application
- Apply systems solution based innovation, rethink how power electronics and electric motors are structured, and executed today

Provide a systematic coordinated development of revolutionary technology for an ETS.

Performance Measures/Technical Accomplishments/Progress/Results

 An Electric Traction Control System that meets all of the requirements and objectives in the EE/TT roadmap simultaneously @ a system cost of \$660

- Additionally improve commercial viability
 - Increase vehicle applications/adoption of technology
 - Increase supplier base
 - Increase competition commodity based products

Accomplishments/Progress/Results (cont.)

- Systems Task 1.1
 - Topology assessment basic analysis for 4 topologies complete
 - Requirements identified for HEV, PHEV, and FCV first pass complete
 - Duty cycle analysis for each vehicle type first pass complete
 - Component requirements first pass complete
 - Packaging requirements for HEV, PHEV, and FCV in process
- Motor Task 1.2
 - Torque speed requirements for HEV, PHEV, and FCV first pass complete
 - Magnet evaluation and selection in process
 - Stator configuration and manufacturing process evaluation and selection in process
- Gearbox Task 1.3
 - Optimization of motor speed versus gear reduction first pass (from motor perspective) complete
- Inverter Task 1.4
 - IGBT and diode evaluation and selection in process
 - Capacitor evaluation and selection in process
- Charger Task 1.5
 - Breadboard build complete
 - Software debug in process
 - Demonstration of bi-directional operation planned

Technology Transfer

- Alignment of technology development with future vehicle needs
- Work with suppliers to develop technical and component base for automotive industry

Activities for Next Fiscal Year

Phase II Development/Demonstration

- Design Advanced Integrated ETS
 - Electrical, thermal and structural analyses, mechanical packaging, and engineering drawings
 - Work closely with suppliers to refine and optimize component designs
 - FMEA
 - Manufacturing assessment
 - Cost analysis
 - Applying learning from GM's electrification experience
 - Manufacturing
 - Component deficiencies for design and manufacturing processes
- Build POC hardware
 - Purchase parts, develop build processes and test procedures
 - Design test equipment for characterization

Summary

- Achieving the cost, volume, and mass objectives of this project will increase the use of electric traction in the automotive fleet
- The systems approach of this project allows for an overall assessment of requirements and technology selection to optimize the complete traction drive
- Topology selection, accurate requirements definition and advanced technologies/materials provide the greatest opportunity for success
- Alignment of future vehicle needs with technology development and the development of suppliers will increase technology transfer
- FY09 Plan
 - Design ETS and procure parts

