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Outline

« Miami/NREL Project
— Synthesis (Miami)
— High Throughput Characterization (NREL)
— Other Characterization

« Other High Throughput Activities (NREL)

— Parallel Sieverts
— Parallel Gravimetric

 Final Comments
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Overview of Miami/NREL Project

« Goals

— Development of H, storage materials based on
MOFs, targeting 15 kdJ/mole binding energy and
high density of H, sites

— Development of optical-based detection of
adsorbed H, allowing rapid screening of samples

* Approach

— Combinatorial MOFs synthesis involving 8
transition-metal-based secondary building units
(SBUs) and 18 carboxylate linkers

i:}bH!B. MNational Renewable Energy Laboratory




Metal-Organic Frameworks (MOFs)

> Crystalline inorganic-organic
hybrids
> Zeolite-like networks

> Desirable characteristics:
o porosity
o chirality
e Qas sorption / storage
o selective adsorption / ion exchange
» fluorescence
o Mmagnetic susceptibility
o oOptical properties
> Great variety of topologies and
network types possible

Zhou et al, Eur. J. Chem. 2006; Zhou et al, Chem. Commun. 2005.



http://www.iza-sc.ethz.ch/IZA-SC/Atlas/data/models/LTA_mod.html
http://www.iza-sc.ethz.ch/IZA-SC/Atlas/data/models/OSI_mod.html

Metal Coordination & H, Blndlng

* Goal is to put metal into
an entatic state which
could enhance H,
binding

« Entatic states often found
In biological systems,
eg., hemoglobin

 PCN-9 system shows

nigh (AH~10 kd/mole) H,

pinding (77 K)

S. Ma and H.-C. Zhou, JACS 128, 11734 (2006)




A Practical Approach for High Throughput/Combinatorial
Screening of Hydrogen-storage MOFs

> Reagents:

18 ligands + 8 metals + a number of solvents + a
series of reaction temperatures

> Reactions:
3*8 reaction rack to run solvothermal reactions

> Screening:

Optical method to screen the products for
hydrogen storage



MOFs Compositional Space
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Vibrational Spectroscopy of Hydrogen

Raman

*H, 1n gas phase 1s Raman active due
to large polarizability

Vibration-rotation spectrum:
*QQ branch: Av=+1,AJ=0
S branch: Av=+1,AJ=2
*Spin information:

*Ortho H, — spins parallel, J = 1
QM) =Q(1))

*Para H, — spins paired, J =0
QW) = Q(0))

*Strength of adsorption inferred from
shifts relative to gas-phase H,

*Because of overlap with gas-phase
peak, deconvolution often needed

Infrared

*Homo-nuclear diatomic molecules, e.g.
gas-phase H, are IR-1nactive

IR absorption induced by inter-molecular
interactions

*Collision-induced (high P or near T,)

*Adsorbent interactions create a bond
dipole

*AE, 4 from shifts relative to H, gas

*Because no gas peak, no
deconvolution necessary

*Metal sites, carbon sites, Lewis sites,
etc. give well-separated shifts

J‘::* MREL National Renewable Energy Laboratory




Theoretical Raman Shifts for H, on SWNTs
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Frequency (cm ')

*Predict fairly large (16 — 50 cm!) red-shifts upon adsorption
*Can be complex, depending on exact adsorption environment
Partial charge transfer weakens H-H bond, = red-shift

BMREL national Renewable Energy Laboratory

- Are such strong interactions seen experimentally? ** Gpnindirmabeilotd et A




Gas-phase hydrogen H, on SWNT/C,/HOPG

8 atm H, on SWNTs = small (~2 cm™!) red and blue-shifts
*Small shifts consistent with physi-sorption, require deconvolution

*Two sites: flat outer or inner surfaces, groove sites..,
oyt Mational Renewable Energy Laboratory
—_——




Raman Bench

3 excitation wavelengths:
*488 nm (Ar 10n)
*532 nm (Nd:YAG)
*632 nm (HeNe)

*Non-fundamental lines removed by
90° grating filters (WF1)

Fundamental removed before
monochromator with notch filter

*Energy resolution: 2 — 8 cm!

eLower limit of detection: ~50 cm’!
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Pressurizable in-situ Raman cell
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Gas-phase H, and SWNTs
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a) Raman spectrum of H, gas in the Q branch region at room temperature.

b) Raman spectra of hydrogen gas over a SWNT sample with increasing
hydrogen gas pressure; inset — Area under H2 Q(1) peak as a function of
hydrogen gas pressure.

L.O.D. determined by calibrated volume -3 NREL Neional Renewabi Energy Laborstory
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Other Characterization

FTIR measurements also possible to §
look for IR modes

Sieverts measurement to verify
optical capacity measurements

Structural studies using single crystal
diffraction (Miami)

— May be possible to find trends and
screen with combinatorial powder XRD
(NREL)

Standard methods also available

(TPD, TGA, DTA, BET,...)




NREL High Through-Put Activities

* Motivation
— Many samples; many types of materials

— Need fast medium-to-high pressure screening
technique for small samples

« Possible Approaches

— Manometric (aka Sieverts, volumetric)
» Reduced steps for isotherm
« Several inexpensive systems in parallel

— Gravimetric
« Parallel quartz microbalance
« True combinatorial capability

i:}bH!B. MNational Renewable Energy Laboratory




Parallel Manometric

 Manometric approach must have
Isolated volumes

— Most useful if each system
Independent

— Cannot share sensors or volumes

« Small Inexpensive Systems Run
In Parallel
— Small volumes for high sensitivity

— Shared common resources such as
gases, gas purifiers, vacuum,
manifolds, thermostat system, DAQ,
computer

— Sensitivity vs. sample size still a
challenge

i:}bH!B. MNational Renewable Energy Laboratory




Parallel Gravimetric

Quartz Crystal Microbalance

* Advantages
— Common chamber

— QCMs technology well
developed & understood

* Uncertainties
— Performance at high P

— Sample mounting (for
adsorbents)

— Temperature performance

i:j»m Matienal Renewable Energy Laboratory




Final Comments

* High throughput methods require significant
commitments to enact (equipment, labor, $)

* Best implemented first in “bottleneck”
applications

» Full implementation requires significant data
storage, handling and software
development

i:}bH!B. MNational Renewable Energy Laboratory
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