Innovation for Our Energy Future

Miami University/NREL DoD/DLA Project

High throughput combinatorial screening of biomimetic metal-organic materials for military hydrogen-storage applications

Philip Parilla - NREL

Joe Zhou, Dan Zhao - Miami U, Ohio Jeff Blackburn, Kevin O'Neill, Lin Simpson, Mike Heben - NREL

Outline

- Miami/NREL Project
 - Synthesis (Miami)
 - High Throughput Characterization (NREL)
 - Other Characterization
- Other High Throughput Activities (NREL)
 - Parallel Sieverts
 - Parallel Gravimetric
- Final Comments

Overview of Miami/NREL Project

Goals

- Development of H₂ storage materials based on MOFs, targeting 15 kJ/mole binding energy and high density of H₂ sites
- Development of optical-based detection of adsorbed H₂ allowing rapid screening of samples

Approach

 Combinatorial MOFs synthesis involving 8 transition-metal-based secondary building units (SBUs) and 18 carboxylate linkers

Metal-Organic Frameworks (MOFs)

- Crystalline inorganic-organic hybrids
- Zeolite-like networks
- Desirable characteristics:
 - porosity
 - chirality
 - gas sorption / storage
 - selective adsorption / ion exchange
 - fluorescence
 - magnetic susceptibility
 - optical properties
- Great variety of topologies and network types possible

Metal Coordination & H₂ Binding

- Goal is to put metal into an entatic state which could enhance H₂ binding
- Entatic states often found in biological systems, eg., hemoglobin
- PCN-9 system shows high (∆H~10 kJ/mole) H₂ binding (77 K)

S. Ma and H.-C. Zhou, JACS **128**, 11734 (2006)

A Practical Approach for High Throughput/Combinatorial Screening of Hydrogen-storage MOFs

- Reagents:
 18 ligands + 8 metals + a number of solvents + a series of reaction temperatures
- Reactions:3*8 reaction rack to run solvothermal reactions
- Screening: Optical method to screen the products for hydrogen storage

MOFs Compositional Space

metal

ions

Vibrational Spectroscopy of Hydrogen

Raman

- •H₂ in gas phase is Raman active due to large polarizability
- •Vibration-rotation spectrum:

•Q branch:
$$\Delta v = +1$$
, $\Delta J = 0$

•S branch:
$$\Delta v = +1$$
, $\Delta J = 2$

•Spin information:

•Ortho
$$H_2$$
 – spins parallel, $J = 1$
($Q(J) = Q(1)$)

•Para
$$H_2$$
 – spins paired, $J = 0$
($Q(J) = Q(0)$)

- •Strength of adsorption inferred from shifts relative to gas-phase H₂
 - •Because of overlap with gas-phase peak, deconvolution often needed

Infrared

- •Homo-nuclear diatomic molecules, e.g. gas-phase H₂ are IR-inactive
- •IR absorption induced by inter-molecular interactions
 - •Collision-induced (high P or near T_c)
 - •Adsorbent interactions create a bond dipole
- • ΔE_{ad} from shifts relative to H_2 gas
 - •Because no gas peak, no deconvolution necessary
 - •Metal sites, carbon sites, Lewis sites, etc. give well-separated shifts

Theoretical Raman Shifts for H₂ on SWNTs

Chem. Phys. Lett. **334**, 18 (2001)

New Jour. Phys. 5, 124 (2003)

- •Predict fairly large $(16 50 \text{ cm}^{-1})$ red-shifts upon adsorption
- •Can be complex, depending on exact adsorption environment
- •Partial charge transfer weakens H-H bond, ⇒ red-shift
- •Are such strong interactions seen experimentally?

Raman Spectroscopic Investigation of H₂, HD, and D₂ Physisorption on Ropes of Single-Walled, Carbon Nanotubes

Keith A. Williams,* Bhabendra K. Pradhan, Peter C. Eklund,† Milen K. Kostov, and Milton W. Cole

H₂ on SWNT/C₆₀/HOPG

- •8 atm H_2 on SWNTs \Rightarrow small (~2 cm⁻¹) red and blue-shifts
- •Small shifts consistent with physi-sorption, require deconvolution
- •Two sites: flat outer or inner surfaces, groove sites.

Raman Bench

- •3 excitation wavelengths:
 - •488 nm (Ar ion)
 - •532 nm (Nd:YAG)
 - •632 nm (HeNe)
- •Non-fundamental lines removed by 90° grating filters (WF1)
- •Fundamental removed before monochromator with notch filter
- •Energy resolution: $2 8 \text{ cm}^{-1}$
- •Lower limit of detection: ~50 cm⁻¹

Pressurizable in-situ Raman cell

Gas-phase H₂ and SWNTs

- a) Raman spectrum of H₂ gas in the Q branch region at room temperature.
- b) Raman spectra of hydrogen gas over a SWNT sample with increasing hydrogen gas pressure; inset Area under H2 Q(1) peak as a function of hydrogen gas pressure.

L.O.D. determined by calibrated volume

Other Characterization

- FTIR measurements also possible to look for IR modes
- Sieverts measurement to verify optical capacity measurements
- Structural studies using single crystal diffraction (Miami)
 - May be possible to find trends and screen with combinatorial powder XRD (NREL)
- Standard methods also available (TPD, TGA, DTA, BET,...)

NREL High Through-Put Activities

Motivation

- Many samples; many types of materials
- Need fast medium-to-high pressure screening technique for small samples

Possible Approaches

- Manometric (aka Sieverts, volumetric)
 - Reduced steps for isotherm
 - Several inexpensive systems in parallel

Gravimetric

- Parallel quartz microbalance
- True combinatorial capability

Parallel Manometric

- Manometric approach must have isolated volumes
 - Most useful if each system independent
 - Cannot share sensors or volumes
- Small Inexpensive Systems Run in Parallel
 - Small volumes for high sensitivity
 - Shared common resources such as gases, gas purifiers, vacuum, manifolds, thermostat system, DAQ, computer
 - Sensitivity vs. sample size still a challenge

Parallel Gravimetric

Quartz Crystal Microbalance

- Advantages
 - Common chamber
 - QCMs technology well developed & understood
- Uncertainties
 - Performance at high P
 - Sample mounting (for adsorbents)
 - Temperature performance

Final Comments

- High throughput methods require significant commitments to enact (equipment, labor, \$)
- Best implemented first in "bottleneck" applications
- Full implementation requires significant data storage, handling and software development