Breakout Group 1: Catalysts and Supports

PARTICIPANTS

Name	Organization	
Piotr Zelenay	Los Alamos National Laboratory	
Fernando Garzon	Los Alamos National Laboratory	
Eugene Smotkin	Northeastern University	
Karren More	Oak Ridge National Laboratory	
Rachel O'Malley	Johnson Matthey Fuel Cells	
Andy Herring	Colorado School of Mines	
Debbie Myers	Argonne National Laboratory	
Gordon Rice	Cabot Fuel Cells	
Hiroyaki Kanesaka	Nissan Motor Corp.	
S. R.Narayanan	Jet Propulsion Laboratory	
Radoslav Atanasoski	3M	
Thomas Wood	3M	
Guido Bender	University of Hawaii	
Larry Gestaut	Giner Electrochemical	
Chris Bajorek	Internatix	
Robert Miller	MTI Micro	
Graham Hards	Johnson Matthey Fuel Cells	
Nancy Garland (Facilitator)	U.S. Department of Energy	
Walt Podolski (Scribe)	Argonne National Laboratory	

Breakout Group 1: Catalysts and Supports

GAPS/BARRIERS

• Need a 4x improvement in oxygen reduction reaction (ORR) kinetics

Lack of:

- Understanding biomimetic catalysts and their potential for fuel cell application
- Fundamental understanding
 - of active sites in non-platinum group metal (PGM) catalysts
 - of active sites in PGM catalysts
 - of catalyst-support interaction
- Coordination of molecular modeling with synthesis and testing
- Rational design of catalysts and catalyst/support systems based on fundamental understanding of active sites and reaction mechanisms
- Stable supports and active catalysts
- Anode catalysts that are not active for ORR to prevent high cathode potentials during start-up/shut-down
- Supports that maximize mass transport to non-PGM catalysts
- Preparation methods that lead to stable and active catalysts
- Anode catalysts for direct low-temperature oxidation of liquid fuels
- Fundamental studies of operating fuel cells
- Accelerated testing that reflects real-world operating conditions

Breakout Group 1: Catalysts and Supports RD&D NEEDS

(priority votes are shown in parentheses)

FUNDAMENTAL UNDERSTANDING &	CATALYST/SUPPORT	ANODE CATALYSTS FOR
DETAILED CHARACTERIZATION	DEVELOPMENT	ALTERNATIVE FUELS
 Fundamental studies to understand catalyst morphology, size, and composition combined with catalyst-support interactions at the nanometer-scale (8) Current catalysts relative to transportation Studies of catalytic activity at the active site Transport of protons and electrons to/from active site in the ionomer environment Analysis/characterization of catalysts before, during, and after fuel cell testing Composition, particle size, crystal structure, morphology, dispersion Nanostructured catalysts and supports for core-shell systems and non-PGM systems, e.g., NEXAFS of adsorbates on core-shell and skin model surfaces Accessibility of platinum (Pt) in catalyst layer Supports that enhance catalytic and transport functions Binders that enable greater access to catalyst sites Fundamental <i>in situ</i> studies of effect of support properties on catalyst stability Carbon supports Non-carbon supports Understanding activity-composition-structure relationships for ORR catalysts Understanding catalyst layer structures Effect of pore distribution Effect of interaction with ionomer Effect of mass transport Modeling and testing of catalyst dynamics (transport & kinetics) 	 New catalysts Low-Pt: core shell, structure-controlled Non-PGM (7) Biomimetic Physicochemical properties of supports that enhance stability of the catalyst/support system Novel synthetic effort Detailed structural studies Integrated theory and modeling with synthesis Integrated team effort in theory, synthesis, and testing in fuel cell environment Development of hydrogen oxidation catalysts with low ORR activity Development of viable supports that would allow increase in loading (thickness) for non-PGM catalysts New techniques/tools to couple experiment with molecular modeling to test predicted performance improvement 	 Multi-metal alloys Activity determination Corrosion resistance In situ studies of catalyst degradation mechanisms Effect of interaction with carbon support Effect of catalyst particle size Effect of catalyst structure

Breakout Group 1: Catalysts and Supports

RD&D NEEDS (Cont'd) (priority votes are shown in parentheses)

DURABILITY & ACCELERATED TESTING	PROJECT IMPLEMENTATION	Other
 In situ studies of catalyst degradation mechanisms (9) Effect of interaction with carbon support Effect of Pt particle size Effect of Pt structure Understanding of morphology/physical characteristics of catalysts on durability Fundamental studies of catalyst degradation under automotive duty cycles/stresses Definition of appropriate stress conditions Carbon corrosion Pt dissolution Understanding relationships between catalysts and impurities Characterize impurity impact on catalyst performance and durability 	 Teaming arrangements encouraged Industry Universities National laboratories "Standard" catalyst samples Standard test protocols Universal testing protocol for catalyst activity studies 	 Explore procedures for catalyst/MEA preparation together with detailed characterization (porosity, SA, etc.) and performance measurements Understand the effects of preparation procedures on performance and life. Effect of Pt price on DOE targets Sensors for low concentrations of hydrogen in pure oxygen at 100% relative humidity Sensors for low concentrations of oxygen in pure hydrogen at 100% relative humidity Sensors operational at up to 1,200 psi and 90°C