STABILIZED SPINELS AND POLYANION CATHODES

ARUMUGAM MANTHIRAM Electrochemical Energy Laboratory (ECEL) Materials Science and Engineering Program The University of Texas at Austin

June 7, 2010

Project ID #: ES051

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start date: June 2009
- Project end date: May 2011
- 50 % complete

Budget

- Total project funding
 DOE: \$520K
- Funding for FY09
 - \$260K
- Funding for FY10
 - \$260K

Barriers

- Barriers
 - Cost
 - Cycle life
 - Energy and power densities
- Targets
 - Long cycle life for 4 V and 5 V spinel cathodes
 - Low manufacturing cost for polyanion (e.g., olivine) cathodes
 - Increased energy and power with spinel and polyanion cathodes

RELEVANCE

- To develop high-performance cathodes for lithium-ion batteries and a fundamental understanding of their structurecomposition-performance relationships
 - To develop low-cost 4 V spinel manganese oxide compositions exhibiting improved capacity retention at elevated temperatures and safety
 - To develop 5 V spinel oxide compositions offering a robust electrodeelectrolyte interface and a combination of high energy and power
 - To develop low-cost manufacturing processes for olivine cathodes and novel synthesis approaches for new nanostructured polyanion cathodes

MILESTONES

Month/Year	Milestone
March 2009	Rapid synthesis and characterization of various phospho-olivines with controlled size and nanomorphologies
June 2009	Optimization of stabilized spinel-layered oxide composite cathodes
September 2009	New cathode materials based on polyanions
March 2010	Characterization of surface-modified, stabilized spinel cathodes
September 2010	Polyanion-containing cathodes with controlled nanomorphologies

APPROACH / STRATEGY

- Develop a firm understanding of the factors controlling the electrochemical performances of cathode materials and utilize the understanding to develop high-performance cathodes for vehicle batteries
- Cationic and anionic substitutions to obtain stabilized 4 V spinel cathodes
- Cationic substitutions in 5 V spinels to stabilize the disordered spinel structure
- Self-surface segregation of certain cations in 5 V spinels to realize a robust, stable cathode-electrolyte interface with suppressed SEI-layer formation
- Novel synthesis approaches for polyanion-containing cathodes including nanoolivines and silicates that can lower manufacturing cost with improved performance
- Solid-state, high-energy ball milling, and solution-based synthesis approaches
- Advanced chemical and structural characterizations
- In-depth electrochemical evaluation including impedance analysis
- Understanding of the structure-property-performance relationships

TECHNICAL ACCOMPLISHMENTS AND PROGRESS

- Fundamental understanding of the factors that control the electrochemical performances of cation-substituted 4 V spinels, which can serve as a guide for the design of high-performance 4 V spinel cathodes
- Oxyfluoride spinel cathodes offer better thermal stability than the oxide counterparts
- Segregation of certain cations like Fe³⁺ to the surface during the synthesis of cationsubstituted 5 V spinels offers a robust, stable cathode-electrolyte interface, resulting in good cycle life and rate capability despite the high operating voltage and offering a new low-cost approach to develop surface-stabilized, high-voltage cathodes
- The redox energy of the lower-voltage couple increases while that of the highervoltage couple decreases in olivine solid solutions $LiFe_{1-v}M_vPO_4$ (M = Mn or Co) compared to that in the unsubstituted LiMPO₄
- Synthesis of phosphate and silicate cathodes by a novel microwave-assisted solvothermal process
- Synthesis of nano-engineered alloy, carbon-decorated Fe₃O₄ nanowire, and graphene anodes, but only results on the cathodes are given in the next 11 slides

FACTORS INFLUENCING THE PERFORMANCE OF 4 V SPINELS

- 1. LiMn_{1.7}Ni_{0.28}Ti_{0.02}O₄
- 2. LiMn_{1.7}Ni_{0.25}Ti_{0.05}O₄
- 3. LiMn_{1.7}Ni_{0.22}Ti_{0.08}O₄
- 4. LiMn_{1.7}Ni_{0.19}Ti_{0.11}O₄
- 5. LiMn_{1.7}Ni_{0.16}Ti_{0.14}O₄
- 6. LiMn_{1.7}Ni_{0.13}Ti_{0.17}O₄
- 7. LiMn_{1.7}Ni_{0.10}Ti_{0.20}O₄

- As the Mn valence increases with a fixed Mn content of 1.7,
 - observed capacity value decreases
 - irreversible capacity (C_{irr}) loss decreases
 - capacity fade decreases
 - Mn dissolution decreases
 - observed/theoretical capacity ratio increases
- A Mn valence of > 3.6+ is desired to get good performance with spinel cathodes, but the capacity value is slightly sacrificed

FACTORS INFLUENCING THE PERFORMANCE OF 4 V SPINELS

1. LiMn₂O₄

- 2. LiMn_{1.8}Ni_{0.05}Ti_{0.15}O₄
- 3. LiMn_{1.7}Ni_{0.075}Ti_{0.225}O₄
- 4. LiMn_{1.6}Ni_{0.10}Ti_{0.30}O₄
- 5. LiMn_{1.5}Ni_{0.125}Ti_{0.375}O₄
- 6. LiMn_{1.4}Ni_{0.15}Ti_{0.45}O₄
- 7. LiMn_{1.3}Ni_{0.175}Ti_{0.525}O₄
- 8. LiMn_{1.2}Ni_{0.2}Ti_{0.6}O₄
- As the Mn content decreases from 2 with a fixed Mn valence of 3.5+,
 - observed capacity value decreases
 - irreversible capacity (C_{irr}) loss increases
 - capacity fade increases
 - observed/theoretical capacity ratio decreases
- LiMn₂O₄ deviates from the capacity fade trend due to unperturbed Mn-Mn interaction and high Mn dissolution

THERMAL STABILITY OF 4 V OXYFLUORIDE SPINELS

- Substitution of fluorine for oxygen increases the thermal stability in the charged and discharged states as indicated by the increase in DSC peak temperature and decrease in ∆H
- The spinel oxyfluoride cathodes offer the combination of higher capacity and better thermal stability compared to the oxide counterparts

SELF-SURFACE SEGREGATED 5 V SPINELS

- LiMn_{1.5}Ni_{0.5}O₄ encounters the formation of NiO impurity and adopts the undesired, ordered P4₃32 structure
- Fe substitution eliminates NiO impurity and stabilizes the desirable disordered Fd3m structure as indicated by the FTIR data with an Fe-enriched surface (see later)

ECEL

CYCLABILITY AND RATE CAPABILITY OF LiMn₁₅Ni_{05-x}Fe_xO₄

RATE CAPABILITY RETENTION AND EIS DATA OF LiMn_{1.5}Ni_{0.5-x}Fe_xO₄

- Rate capability retention was obtained by dividing the capacity obtained at various C rates after 50 cycles by the capacity obtained at the corresponding C rates after 3 cycles
- Fe-substituted samples exhibit remarkably higher rate capability retention than LiMn_{1.5}Ni_{0.5}O₄, *i.e.* the Fe-substituted samples retain the high rate capability as they are cycled
- The better rate capabilities of the Fe-substituted samples are due to lower impedance

ORIGIN OF BETTER CYCLABILITY AND RATE CAPABILITY

Concentrations of various ions on the surface of LiMn_{1.5}Ni_{0.5-x}Fe_xO_4 - XPS analysis

Quantity	LiMn _{1.5} Ni _{0.5} O ₄		LiMn _{1.5} Ni _{0.42} Fe _{0.08} O ₄			
	Mn	Ni	Mn	Ni	Fe	
Nominal percentage	75	25	75	21	4	
Surface percentage	77.8	22.2	73.5	16.4	10.1	
Bulk percentage	75.2	24.8	74.9	20.9	4.2	

- Fe³⁺ segregates to the surface as Fe³⁺ prefers a lower coordination number (tetrahedral)
- Fe³⁺ enrichment on the surface suppresses SEI layer formation due to a decrease in the catalytic decomposition of the electrolyte at the high operating voltage of 4.8 V, which is consistent with the lower charge-transfer resistance found in the impedance data
- The finding offers a new strategy to overcome the instability of the cathode surface in contact with the electrolyte at high operating voltages
- The self-surface segregation during synthesis offers a low-cost manufacturing approach without requiring external, surface modification by solution-based methods

FACILE SYNTHESIS OF CARBON-COATED NANO-OLIVINES

Compositions Investigated

- Carbon-coated LiM_{1-y}M_yPO₄ synthesized by high-energy mechanical milling (HEMM) of the transition metal oxalates, Li₂CO₃, NH₄H₂PO₄, and super-p carbon for 10 h, followed by heating in argon at 550 °C for a short time of 6 h
- LiM_{1-y}M_yPO₄ : C ratio is 80 : 20
- Represents an easy, low-cost synthesis approach
- Steps in the voltage profiles are characteristic of the different redox couples involved

SHIFTS IN THE REDOX POTENTIALS OF LIM_{1-y}M_yPO₄

 The redox potential (open-circuit voltage) of a given M^{2+/3+} couple in the LiM_{1-y}M_yPO₄ solid solution shifts systematically compared to that in the pristine LiMPO₄

- The potential of the lower-voltage couple increases while the potential of the higher-voltage couple decreases in the LiM_{1-y}M_yPO₄ solid solution compared to that in the pristine LiMPO₄
- Changes in the M-O covalence (inductive effect) play a role in shifting the redox potentials
- Substitution of less electropositive Co²⁺ for Fe²⁺ or Mn²⁺ decreases the Fe-O or Mn-O covalence and thereby lowers the Fe^{2+/3+} or Mn^{2+/3+} redox energy and increases the voltages of Fe^{2+/3+} and Mn^{2+/3+}, while the substitution of more electropositive Fe²⁺ or Mn²⁺ for Co²⁺ increases the Co-O covalence and thereby raises the Co^{2+/3+} redox energy and decreases the voltage of Co^{2+/3+}

NOVEL MW-ST SYNTHESIS OF Li₂FeSiO₄/C NANOSPHERES

SEM of Li₂FeSiO₄/C nanospheres

Electrochemical Performance of Li₂FeSiO₄/C

- Li₂MSiO₄ (M = Fe and Mn) offers two times higher theoretical capacity than LiMPO₄ due to the possibility of extracting/inserting two Li per formula unit
- Li₂MSiO₄ are synthesized by the microwave-assisted solvothermal (MW-ST) process we developed before for LiMPO₄ (M = Mn, Fe, Co, and Ni)
- However, Li₂FeSiO₄ needs post-annealing at 700
 °C in argon to obtain a highly crystalline, pure sample
- Li_2FeSiO_4/C gives150 mAh/g with stable cycle life

MW-ST SYNTHESIS OF LiFe_{1-x}(VO)_xPO₄ SOLID SOLUTIONS

- LiFe_{1-x}(VO)_xPO₄ (x = 0 to 0.25) were synthesized by a microwave-assisted solvothermal process (MW-ST) within a short reaction time of 10 min at < 300 °C without requiring post annealing at elevated temperatures in reducing gas atmospheres
- Change in lattice parameters confirm the formation of solid solutions
- The large sloping voltage profile of LiFe_{0.75}(VO)_{0.25}PO₄ suggests suppression of the twophase behavior found in LiFePO₄

COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

- Brookhaven National Laboratory Dr. Kyung-Wan Nam
 - In-situ X-ray diffraction and X-ray absorption spectroscopy
- Stanford Linear Accelerator Center (SLAC) Drs. Sumohan Misra & Michael Toney
 - In-situ diffraction experiments
- University of Texas at Austin Professor John B. Goodenough
 - Discussion of experimental results

PROPOSED FUTURE WORK

- Continue to develop a fundamental understanding of the factors influencing the electrochemical performances of spinel cathodes and utilize the understanding to develop optimized spinel cathode compositions
- Identify the cations that self-segregate to the surface during synthesis process by examining the samples by XPS and high-resolution TEM, and utilize the information to develop 5 V cathodes that can offer a robust cathode-electrolyte interface
- Investigate systematically how the SEI layer (formation, thickness, and composition) changes with different surface-segregated cations in 5 V spinel cathodes
- Investigate systematically the thermal stability of oxyfluoride cathodes by DSC and establish whether fluorine substitution can be utilized to improve the safety
- Utilize the microwave-assisted solvothermal approaches to synthesize new polyanion cathodes such as Li_2MSiO_4 (M = Mn, Fe, Co, and Ni) and $Li_xM_2(PO_4)_3$ and assess the defect chemistry of the phases formed (kinetically stabilized phases)
- Develop a one-pot microwave-assisted solvothermal synthesis approach to obtain olivine-graphene or silicate-graphene nanocomposite cathodes

SUMMARY

- Mn valence and Mn content are found to play a critical role in determining the capacity value, capacity fade, Mn dissolution, and irreversible capacity loss in 4 V spinel cathodes; samples with Mn valence > 3.6+ offer superior performances
- Substitution of fluorine for oxygen improves the safety of spinel cathodes
- Certain cations like Fe³⁺ segregate to the surface during synthesis due to their preference for tetrahedral coordination, which leads to a more stable cathodeelectrolyte interface with high-voltage cathodes like 5 V spinel, offering a viable, low-cost approach to develop high-voltage cathodes
- The redox energies of the couples are shifted in olivine solid solutions LiFe_{1-v}M_vPO₄ (M = Mn or Co) compared to that in their LiMPO₄ counterparts – lower-voltage couple potential increases and the higher-voltage couple potential decreases
- Li₂FeSiO₄ cathodes have been synthesized by a novel microwave-assisted solvothermal process
- Building on the fundamental understanding gained, our future work will continue focusing on developing high-performance spinel and polyanion cathodes

