Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine Combustion Research

Joseph C. Oefelein and Bing Hu

Combustion Research Facility Sandia National Laboratories Livermore, California 94550

Tuesday, June 8, 2010

Project ID: ACE007

CRE

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project provides fundamental research that supports advanced engine development projects
- Focused on development of next generation simulation capabilities using "capability class" computers
- Project scope, directions and continuation evaluated annually

Budget

 Project funded by DOE/OVT: FY09 – \$450K
FY10 – \$450K

Barriers

Two sets of barriers addressed

- 1 Development of clean high-efficiency engines using hydrocarbon based fuels (petroleum and non-petroleum) and hydrogen
 - LTC technologies (i.e., understanding effects of fuel-injection, ignition-timing, heat-transfer and engine-geometry on fuel-air mixing, combustion, soot, emissions over broad operating range)
- 2 Requirements for efficient and routine application of high-performance (exascale) computing and advanced simulation/modeling capabilities for advanced engine combustion research

Partners

- PI's in the Engine Combustion Group at Sandia, Wisconsin, Penn State, Michigan, TU Darmstadt, GM (most recent)
- Project lead: Joe Oefelein

Relevance ... high performance computing (HPC) and advanced code base offers significant opportunities

- <u>Project objective</u>: Combine unique capabilities to maximize benefits of HPC for advanced engine combustion research
 - Detailed theoretical framework
 - Specialized massively-parallel flow solver
 - Access to full hierarchy of DOE computers
- Provides strong link between DOE <u>Office of Science</u>, related HPC systems and <u>Office of Vehicle Technologies</u>
 - Computational Combustion and Chemistry Laboratory (BES – OVT)
 - Mid-scale computer clusters and storage
 - SISGR mid-scale equipment upgrade (BES)
 - Combustion Research and Computational Visualization Facility (BES – OVT)
 - 9000 sq-ft building for computational combustion
 - Computer room, viz and collaborative space
 - DOE Office of Science Laboratories
 - LBNL NERSC (www.nersc.gov)
 - ORNL NCCS (www.nccs.gov)
 - INCITE Program
 - 25-million CPU hours for LES in 2010 (IC-engines)

Combustion Research and Computational Visualization Facility

Jaguar, the Cray XT5 at ORNL is the world's fastest computer (2.33-petaflop system, 224,256 processing cores)

Approach ... perform unique one of a kind calculations consistent with the role of a national laboratory

- Combine state-of-the-art LES with existing expertise in optical engine (and supporting) experiments
 - <u>High-fidelity</u> simulations that identically match geometry, etc.
 - Computational benchmarks that complement experimental data
- Systematically address barriers associated with advanced modeling and simulation on petascale (and beyond) platforms
 - Access to a hierarchy of computational resources
 - Software that provides highly-scalable performance
 - High-quality grid generation for complex geometries
- Hierarchal model development using benchmarks as additional source of data to address engine related barriers
 - Provide fundamental insights not available anywhere else
 - Establish model performance and implementation requirements
 - Perform collaborative model development for engineering design

Theoretical-Numerical Framework (RAPTOR: A general solver optimized for LES & HPC)

- Theoretical framework
 - Fully-coupled, compressible conservation equations
 - Real-fluid equation of state (high-pressure phenomena)
 - Detailed thermodynamics, transport and chemistry
 - Multiphase flow, spray
 - Dynamic SGS modeling (no tuned constants)
- Numerical framework
 - All-Mach-number formulation
 - Non-dissipative, conservative
 - Complex geometry
 - Adaptive mesh (ALE)
 - Massively-parallel (MPI)
- Extensively validated, ported to all major platforms

Verification and validation performed continuously to assess both algorithmic and model accuracy

Milestones

- Develop improved high-pressure multiphase models for time-accurate treatment of direct-injection processes
 - Initial emphasis on high-pressure hydrogen injectors, model validation using data from Petersen and Ghandhi (U. Wisconsin)
 - Currently focused on liquid hydrocarbon injectors (collaboration with Musculus, Pickett (www.ca.sandia.gov/ECN))
- Continue high-fidelity simulations of H₂-ICE (Kaiser et al.)
 - Validation through comparison of measured, modeled results
 - Chemiluminescence Imaging and Particle Image Velocimetry (PIV)
 - Planar Laser Induced Fluorescence (PLIF)
 - Detailed analysis of in-cylinder direct-injection mixing and combustion processes (3D dynamics)
- Begin simulations of HCCI engine experiments (Dec et al.)
 - Detailed studies of low temperature combustion processes
 - Current focus on natural thermal stratification

Accomplishment 1: Analysis of transient jet dynamics and entrainment with emphasis on Diesel injection

- Diesel jets involve quasi-steady and transient (decelerating) phases
- Decelerating phase important for design of LTC engines due to greater mixing
 - Lean mixture decreases tendency for soot formation ... desirable
 - Over-lean mixture increases tendency for UHC emissions ... undesirable
- Entrainment is rate-controlling process
- <u>Objective</u>: Understand entrainment processes in transient jets at Diesel like injection conditions
 - Quantify unsteady characteristics as function of entrainment coefficients
 - Understand governing mechanisms during jet deceleration

B. Hu, M. P. Musculus, and J. C. Oefelein. Large eddy simulation of a transient gas jet with emphasis on entrainment during deceleration. SAE World Congress, Paper 2010-01-1133, April 13-15 2010.

Computational Domain

- Multiblock grid with 3-million cells and optimal stretching (130-million CPU hrs)
- Time step 160 ns, correlated fluctuations imposed at orifice inflow boundary
- Injected fluid marked using passive scalar (Z_{JET} = 1)

Mean injection profile designed to match experiment of Witze (AIAA Journal, Vol. 21, 1983)

ĈRE

Iso-surfaces of passive scalar with the corresponding velocity vectors

Iso-surfaces of passive scalar with the corresponding velocity vectors

CRF

Iso-surfaces of passive scalar with the corresponding velocity vectors

CRF

Iso-surfaces of passive scalar with the corresponding velocity vectors

Iso-surfaces of passive scalar with the corresponding velocity vectors

The decelerating jet shows increased entrainment compared with the quasi-steady jet

Entrainment coefficient describes entrained mass per unit axial distance

- Decelerating jet shows increased entrainment in downstream region
- Increased entrainment leads to a much leaner mixture

Conventional analysis only considers bulk effects, with LES we can study the unsteady broadband dynamics

Entrainment coefficient describes entrained mass per unit axial distance

- Decelerating jet shows increased entrainment in downstream region
- Increased entrainment leads to a much leaner mixture

Structural differences between steady and unsteady jets is reason for difference in entrainment

Does the formation of interface indentations induce increased entrainment?

Decelerating jet exhibits more indentations on the interface

Analysis of unsteady dynamics reveals a correlation between interface indentations and entrainment

- Each indentation accompanies increased entrainment
 - Indentations form engulfment regions
 - Engulfment regions contain large packets of ambient fluid
 - These fluids have higher probability to cross jet boundary (to be entrained)

Summary

- Region of increased entrainment forms and propagates during deceleration
 - Interface indentations are induced by flow instabilities
 - Appears to be key mechanism of enhanced entrainment
 - Has implications on fuel injection strategy and control
- Manipulation of jet instability as part of injection strategy can be used to control downstream mixing in diesel engines

Next Steps

- Refined analysis focused on control in collaboration with Musculus et al.
- Model reduction for industry design codes in collaboration with Rutland et al.
- Extension to n-heptane combustion using ECN target cases in collaboration with Pickett et al.

Accomplishments 2, 3: In-cylinder flow dynamics and combustion in the CRF hydrogen and HCCI engines

Preliminary simulation of natural thermal stratification processes in HCCI engines

Initial qualitative comparisons with data from Dec et al. in progress

- Images at left show temperature fields at 360° CA, 4 mm below firedeck.
- Plot above shows bulk temperature in cylinder during compression
- Simulations produce similar temperature variations as a function of crank angle

CRE

Detailed treatment of flow boundary conditions and swirl must be added

Supporting model development with emphasis on combustion and multiphase flows at high-pressures

ρ, kg/m³

1200

1000

800

600

400

200

0

- Turbulence-chemistry interactions
 - Continued development of combustion closures, emphasis on hydrocarbons
 - Reduction from high-fidelity models to affordable engineering-based models
- Extension to variety of fuels

BES ⇒ – Dimethyl-ether, ethane, propane, ethylene ovt ⇒ – Ethanol, dodecane, n-heptane, iso-octane

Thermophysical Transcritical **Properties** Regime Pressure, MPa High-pressure, low-**Supercritical** temperature multiphase Regime combustion processes require treatment of non-ideal gases and **Critical Point** liquids at near-critical **Ideal Gas** and supercritical Regime conditions. Our existing capabilities Temperature, K in this area will be

further generalized over

the next review cycle.

J.C. Oefelein (2010.). General package for evaluation of multicomponent real-gas and liquid mixture states at all pressures. SAND report.

- Progressive treatment of sprays
 - Research issues are well known
 - Atomization and treatment of interfaces
 - Near-critical, supercritical jet disintegration
 - Secondary breakup, dense spray dynamics
 - Dilute drop dynamics and combustion
 - Adopt hierarchal approach
 - Past work has demonstrated baseline accuracy for dilute particle-laden flow
 - Extend findings for case of dilute vaporizing flow (e.g., Masri et al.)
 - Work toward treatment of secondary breakup and incorporation of combustion
 - Concurrent efforts on jet atomization and interface dynamics (Herrmann et al.)

Collaborators ... Special thanks to Dr. Bing Hu, Postdoctoral Appointee funded under this project

- CRF Departments 8351, 8353, 8362, 8367, 8963 (Barlow, Chen, Dec, Frank, Kaiser, Keller, Kerstein, Mayo, Miles, Musculus, Najm, Pickett, Rouson, Settersten, Shaddix, Siebers, Steeper).
 - 8353: Combustion Chemistry
 - 8362: Engine Combustion
 - 8367: Hydrogen & Combustion Technology
 - 8963: Scalable Modeling & Analysis
- Professor W. Anderson, Purdue University.
- Professor J.-Y. Chen, University of California, Berkeley.
- Professor A. Dreizler, Technical University of Darmstadt, Germany.
- Professor B. Geurts, University of Twente, The Netherlands.
- Professor D. Haworth, The Pennsylvania State University.
- Professor J. Janika, Technical University of Darmstadt, Germany.
- Professor A. Kempf, Imperial College London, UK.
- Professor T. Lieuwen, Georgia Institute of Technology.
- Professor K. Mahesh, University of Minnesota.
- Professor S. Menon, Georgia Institute of Technology.
- Professor C. Merkle, Purdue University.
- Professor M. Modest, University of California, Merced.
- Professor C. Pantano, University of Illinois at Urbana-Champaign.
- Professor T. Poinsot, CERFACS, France.
- Professor S. Pope, Cornell University.
- Professor C. Rutland, University of Wisconsin, Madison.
- Professor R. Santoro, The Pennsylvania State University.
- Professor V. Sick, University of Michigan.
- Professor H. Wang, University of Southern California.
- Professor V. Yang, Georgia Institute of Technology.

- Dr. J. Bell, Lawrence Berkeley National Laboratory.
- Dr. J. Bellan, NASA Jet Propulsion Laboratory.
- Dr. C. Carter, Air Force Research Laboratory, WPAFB, OH.
- Dr. T. Drozda, Rolls Royce Aircraft Engines.
- Dr. O. Haidn, The German Aerospace Center (DLR).
- Dr. D. Kothe, Oak Ridge National Laboratory.
- Dr. T.-W. Kuo, General Motors R&D Center.
- Dr. M. Oschwald, The German Aerospace Center (DLR).
- Dr. S. Rahman, NASA Stennis Space Center.
- Dr. M. Roquemore, Air Force Research Laboratory, WPAFB, OH.
- Dr. R. Sankaran, Oak Ridge National Laboratory.
- Dr. V. Sankaran, United Technologies Research Center.
- Dr. K. Tucker, NASA Marshall Space Flight Center.
- Dr. D. Talley, Air Force Research Laboratory, EAFB, CA
- Postdoc's and Students
- Tomasz Drozda, University of Pittsburgh, Oct 2005 Oct 2008.
- Victoria Lee, Cal. Polytechnic State University, Summer 2006, 2007.
- Vaidyanathan Sankaran, Georgia Tech., Feb 2006 Oct 2008.
- Robert Knaus, UIUC, Summer 2007, 2008.
- Joshua Smith, University of Adelaide, Australia, 2007.
- Bing Hu, University of Wisconsin, Madison, Jan 2009 Present.
- Jeffrey Doom, University of Minnesota, Jan 2009 Present.
- Guilhem Lacaze, CERFACS, Toulouse France, Aug 2009 Present.

- Ville Vuorinen, Helsinki University of Technology, Finland, 2009.
- Rainer Dahms, Aachen University, Germany, Starting Jun 2010.
- Matthieu Masquelet, Georgia Tech., 2010.

Collaborators ... LES working group established for joint model development using common experiments

Future Work

- Continue canonical calculations of direct-injection processes for high-pressure, low-temperature engine applications
 - Collaboration with Musculus, Pickett's "Engine Combustion Network" for validation (www.ca.sandia.gov/ECN)
- Continue high-fidelity simulations of optical H₂-ICE (Kaiser et al.)
 - Validation through comparison of measured, modeled results
 - Joint analysis of data from validated simulations
- Continue simulations of HCCI engine experiments (Dec et al.)
 - Current focus on natural thermal stratification
 - Extend to reacting flow over full engine cycles
- Continue leveraging between DOE Office of Science and Energy Efficiency and Renewable Energy activities
 - Access to DOE high-performance "capability-class" computers
 - Development and validation of turbulent combustion models

Summary

- Project provides significant link between DOE Office of Science and Office of Vehicle Technologies
 - Objective: Merge state-of-the-art LES capability with key experiments
 - Benefits: Moves beyond current models, additional source of detailed data
 - Focus: Barriers related to both <u>Advanced Engine R&D</u> and <u>Development of</u> <u>Advanced Simulation Capabilities</u> using high-performance computing
- Major accomplishments since last review
 - INCITE grant on DOE capability class computers (25-million CPU hours)
 - Contributions toward establishing collaborative resources and facilities
 - Detailed analysis of transient injection and entrainment processes
 - In-cylinder calculations of CRF hydrogen and HCCI engines ongoing
- Have begun to establish technology transfer through collaborations with industry and academia with emphasis on
 - Model reduction for industry design codes, validated suite of sub-models
 - High-pressure phenomena (chemistry, thermodynamics, transport ...)
 - Multiphase flow and combustion (atomization, jet breakup ...)
 - Clean and efficient combustion of using a variety of fuels ...
 - Establishing model implementation and performance criteria for LES and RANS (i.e., maximize accuracy, minimize cost)

