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Independent Review Panel Summary Report 
September 30, 2009 
 
From:  Independent Review Panel, Hydrogen Production Cost Estimate Using Water Electrolysis 

To:  Mr. Mark Ruth, NREL, DOE Hydrogen Systems Integration Office 
 Mr. Todd Ramsden, NREL, Hydrogen Technologies and Systems Center 

Subject:  Independent Review Panel Summary Report 

 
Per the tasks and criteria of the Independent Review Charter of December 22, 2008, this is the 
Independent Review Panel’s unanimous technical conclusion, arrived at from data collection, document 
reviews, interviews, and deliberations from February 2009 through June 2009. All reported hydrogen 
costs include a real 10% internal rate of return on investments and are expressed in 2005 reference-year 
dollars. For central production, the hydrogen cost is at the plant gate of an electrolysis facility with a 
capacity of 50,000 kg/day. For distributed production the electrolysis unit is located at a forecourt 
refueling site and has a design capacity of 1,500 kg/day. The distributed hydrogen cost includes both the 
production cost and the cost of compression, storage, and dispensing. 

Conclusions 
• The current (2009) state-of-the-art cost for delivered hydrogen from electrolysis for a forecourt 

refueling station ranges from $4.90/kg-H2 to $5.70/kg-H2 dispensed at the pump, with a base-case 
estimate of $5.20/kg-H2. This base-case estimate of $5.20/kg-H2 includes an electrolysis production 
cost of $3.32/kg-H2 and compression, storage and dispensing costs of $1.88/kg-H2. These costs are 
evaluated using EIA Annual Energy Outlook (AEO) 2005 High A Case industrial electricity costs 
($0.053/kWh on average). 

• The current (2009) state-of-the-art plant gate cost for hydrogen from a central electrolysis operation 
ranges from $2.70/kg-H2 to $3.50/kg-H2 with a base-case estimate of $3.00/kg-H2. These costs are 
evaluated at an assumed renewable-based electricity cost of $0.045/kWh, which was supplied to the 
Panel by DOE and based on wind-generated electricity. 

• Significant technology advancements in reducing capital costs and improving efficiency have lead to 
substantially improved electrolysis production costs compared to DOE’s H2A assessment of 2005 
technology costs (forecourt production at $6.05/kg and central production at $4.50/kg). Current state-
of-the-art electrolysis conversion efficiency is 67% (LHV), only slightly less than the DOE 2014 
target of 69%. Electrolyzer capital costs are expected to fall to $380/kW for forecourt production 
systems and $460/kW for central production facilities, compared to the DOE 2014 targets of 
$400/kW and $350/kW, respectively. 

Rationale 
Based on its electrolyzer experience and investigations into current state-of-the-art electrolyzer 
technologies, the Panel has determined that recent advances in electrolyzer technologies are expected to 
result in reduced capital costs and improved conversion efficiency. These technology advances are either 
ready for commercial development or could be commercialized within about four years. As part of its 
examination of electrolyzer technologies, the Panel reviewed the available information concerning 
electrolysis technologies and gathered feedback from electrolyzer suppliers and developers. The Panel 
examined annual and final reports from DOE-funded principal investigators as well as other general 
electrolysis reports and relevant literature. The Panel also had discussions with electrolyzer companies 
regarding their new technology developments, laboratory-scale electrolyzer demonstrations, and 
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commercial offerings. Innovations and advancements presented to the Panel by electrolyzer companies 
support the significant reduction in capital costs and efficiency improvement expressed in this report. 
Advancements have been made in both proton exchange membrane (PEM) and alkaline electrolyzers and 
the cost and efficiencies of both approaches overlap, with neither having a clear advantage over the other. 

To arrive at hydrogen costs for central and distributed production using water electrolysis, the Panel used 
the DOE H2A Production model modified to reflect current state-of-the-art electrolysis technologies. 
Specifically, the Panel used the DOE-published H2A cases for forecourt and central electrolysis 
production representing 2005 technology as a starting point. All of the inputs were reviewed and were 
modified as appropriate based on the Panel’s experience and its evaluation of information gathered from 
electrolyzer developers. Using these modified H2A cases for forecourt and central electrolysis, the Panel 
developed base-case cost results for current 2009 state-of-the-art technology. The Panel also performed a 
sensitivity analysis to express the uncertainty in its base-case values to arrive at a range for the results. 
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1 Background 

The mission of the U.S. Department of Energy (DOE) Hydrogen Program is to research, 
develop, and validate fuel cell and hydrogen production, delivery, and storage technologies. 
Hydrogen from diverse domestic resources then can be used in a clean, safe, reliable, and 
affordable manner in fuel cell vehicles and stationary power applications. The Hydrogen 
Program measures progress against the research and development (R&D) technical targets it 
established in conjunction with industry partners. Additionally, it commissions independent 
verifications of progress made towards meeting key technical targets. These verifications provide 
an unbiased view of the program’s progress that is based on the input of independent technical 
experts. Understanding this unbiased information is critical to program decision making; budget 
planning; and prioritization of research, development, and demonstration activities. The verifica-
tions help to ensure the quality, objectivity, utility, and integrity of information disseminated to 
the public. As such, they improve confidence in the results and conclusions that DOE and other 
stakeholders reference in technical and program publications, announcements, Congressional 
testimony, and other arenas. 

The National Renewable Energy Laboratory (NREL) Systems Engineering & Program 
Integration Office (Systems Integrator) was tasked by the U.S. Department of Energy Hydrogen, 
Fuel Cells and Infrastructure Technologies (HFCIT) Program Manager to commission an 
independent review to estimate the current (2009) state-of-the-art hydrogen production cost 
using water electrolysis systems. The NREL Systems Integrator is responsible for conducting 
independent reviews of progress toward meeting the HFCIT Program technical targets. Since 
2005, the HFCIT Program has provided funding for projects to improve performance and to 
reduce the cost of hydrogen production using water electrolysis. Hydrogen production cost esti-
mates for the state-of-the-art technology as it exists today are required for gauging the progress 
that industry and these DOE-funded projects have made, and to provide guidance on the direc-
tion of future R&D funding. 

This review examines alkaline and polymer electrolyte membrane (PEM) water electrolyzers, as 
requested by DOE. The hydrogen production cost review includes both distributed and central 
production. For distributed production, the electrolyzer is located at a refueling site and has a 
design capacity of 1,500 kg/day. The hydrogen cost includes both the production cost and the 
cost of storage, compression, and dispensing (C/S/D). The Independent Review Panel (the Panel) 
focused on the cost of production, using the C/S/D costs as outlined in DOE’s H2A Current 
Forecourt Hydrogen Production from Grid Electrolysis (1,500 kg per day) version 2.1.2. The 
Panel only modified the amount of storage based on its analysis of the electrolysis capacity 
factor and site storage needs. For central production, the hydrogen cost is at the plant gate of an 
electrolysis operation with a 50,000 kg/day capacity. The review assumes that the plant is 
supplied electricity based on renewable energy and has a high operating capacity factor limited 
only by the performance of the electrolyzers. 

This report provides the results of the Independent Review Panel’s examination of the progress 
in meeting water electrolysis cost targets for distributed and centralized facilities. It also provides 
perspective on the cost of hydrogen from today’s (2009) “state-of-the-art” distributed and central 
production technology. The key cost drivers for hydrogen production from electrolysis are 
capital cost and electricity use. The progress made on these cost drivers can be compared with 
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the DOE targets for these variables. Jointly with DOE, the Panel has defined “state of the art” as 
technology that has been demonstrated to at least some degree at a laboratory scale or larger and 
that could be commercialized within about a four-year timeframe. The estimate of the current 
state-of-the-art technology is compared to that published in the DOE Hydrogen Analysis (H2A) 
version 2 electrolysis cases,1 which were based on 2005 technology. 

It is difficult to compare the Panel’s results with the DOE Hydrogen Program overall cost targets 
for water electrolysis. These targets were established utilizing the H2A Production version 1 
models. The H2A Forecourt Production Model version 2 has significantly improved knowledge 
of the costs of C/S/D, and includes other improvements which add significantly to the cost of 
hydrogen. The H2A central production electrolysis cases used to generate the DOE central 
electrolysis targets are based on an integrated wind and electrolysis operation that produces 
50,000 kg per day on average, but which has a low electrolyzer operating capacity factor of 58% 
due to wind variability. This is very different from the central electrolysis–production case the 
Panel was asked to examine. 

2 Objective 

The objective of this project is to obtain a consensus technical conclusion from a panel of 
independent industry experts with regard to the estimated current (2009) state-of-the-art cost of 
producing hydrogen from both alkaline and PEM water electrolyzers for distributed and central 
production. 

3 Data Collection 

Initial sources of information for the Panel’s independent review were provided by the DOE, and 
included information such as annual and final reports from project principal investigators, 
comments provided by Annual Merit Reviewers and the FreedomCAR and Fuel Partnership’s 
Hydrogen Production Tech Team on the research and development (R&D) projects, and other 
general electrolysis reports and information. The Panel supplemented this information using 
literature research, examination of project data and status reports, interviews with technical 
experts, discussions with applicable organizations/individuals, and data requests. 

To facilitate data collection, an Industry Questionnaire and an Electrolysis Fact Sheet were 
prepared (see Appendix A) and sent to interested suppliers. The Fact Sheet includes an 
explanation of the goals of the data request followed by a list of specific technology, capital cost, 
and production questions covering data items required for the H2A modeling analysis. For 
distributed hydrogen production, the cost for compression, storage, and dispensing (C/S/D) was 
taken from the DOE-published H2A version 2 case, with only a minor adjustment as indicated in 
Section 4.2.1, Capacity Factor and Storage (below). 

Table 1 provides a top-level summary of current commercial or near commercial hydrogen PEM 
and alkaline electrolysis technologies. As shown in the table, a number of small PEM units, 
producing typically less than 100 kg of hydrogen per day, have been constructed and tested or 

                                                 
 
1 Http://www.hydrogen.energy.gov/h2a_analysis.html. Accessed September 19, 2009. 
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are in the process of being developed and built. Commercial alkaline electrolyzers that produce 
up to 1,000 kg of hydrogen per day currently are available. 

All the companies listed in Table 1 were interviewed by the Panel, and all but one of these 
companies completed an Electrolysis Fact Sheet and had follow-up discussions with the Panel. 
Additionally, the Panel used data from General Electric’s Advanced Alkaline Electrolysis 
program. The interviews and data sheets provided a great deal of very valuable information 
about the progress that has been made over the past five years and the current state of the art in 
the production of hydrogen by electrolysis. The Panel’s opinion is that the progress made thus 
far—and which continues to be made—is impressive. 

Table 1. Commercial or Near Commercial Hydrogen Production PEM and  
Alkaline Electrolysis Technology 

Supplier Location Technology 
Production 

Capacity (kg/day) 
H2 Product 

Pressure (psi) 
Avalance United States Unipolar Alkaline Up to 10 Up to 6,500 

Giner United States Bipolar PEM Up to 8 Up to 1,250 

H2 Technologies Norway Bipolar Alkaline Up to 1,000 Atmospheric 

Hydrogenics United States Bipolar PEM Up to 127 Up to 363 

IHT Switzerland Bipolar Alkaline Up to 1,500 Up to 464 

Proton United States Bipolar PEM Up to 13 Up to 435 

 
4 Discussion 

4.1 General Discussion 
4.1.1 Electrolysis Technology 
Hydrogen is produced via electrolysis by passing direct current through two electrodes in water. 
The water molecule is split, producing oxygen at the anode (positive electrode) and hydrogen at 
the cathode (negative electrode). Typical requirements of the electrolysis systems include 
electricity for electrolysis and other peripheral equipment, cooling water for the hydrogen 
generation unit, pre-pressurization gas, and inert gas. Three types of low temperature industrial 
electrolysis units currently are produced—unipolar electrolyzer, bipolar electrolyzer, and solid 
polymer electrolyte electrolyzer. 

Alkaline electrolyzers involve using an aqueous solution of potassium hydroxide (KOH). This is 
used because of KOH’s high conductivity, and because the oxygen evolution reaction has the 
least energy loss in this solution. These electrolyzers do not require precious metals and typically 
use nickel electrodes. The electrolyzer units can be either unipolar or bipolar. 

A unipolar electrolyzer resembles a tank and has electrodes connected in parallel. This electro-
lyzer design is a high-current, low-voltage system with a single bus bar connecting all the anodes 
and another connecting all the cathodes. A membrane is placed between each cathode and anode; 
this separates the hydrogen and oxygen as the gasses are produced but allows the transfer of ions. 

 3



The bipolar alkaline electrolyzer resembles a filter press. Electrolysis cells are connected in 
series; hydrogen is produced on one side of each cell and oxygen on the other side. The bipolar 
electrolyzer is a high-voltage, lower current device, and a membrane separates the electrodes. 
Most commercial alkaline systems use the bipolar design. 

The third type of electrolysis unit is a solid polymer electrolyte (SPE) electrolyzer. Such systems 
also are referred to as proton exchange membrane or polymer electrolyte membrane (PEM) 
electrolyzers. In this unit the electrolyte is a solid ion conducting membrane and the electrolyzer 
therefore is fed with pure water. (This is in contrast to the KOH aqueous solution in the alkaline 
electrolyzers.) The traditional membrane is Nafion® and consists of a Teflon®-like polymer with 
attached sulfonic-acid groups. The membrane allows the H+ ion to transfer from the anode side 
of the membrane—where oxygen is produced—to the cathode side where it forms hydrogen. The 
SPE membrane then also serves to separate the hydrogen and oxygen gasses. This effectively is 
an acid environment, therefore significant precious metal (Pt, Ir, Ru) loadings are used. PEM 
electrolyzers typically are configured in the bipolar mode. 

The technology used in the chlor-alkali industry is in many ways similar to the PEM technology, 
such as using similar types of ion conducting membranes and precious metal catalysts. Although 
there are important differences in both environment and cell structure, it is interesting to note that 
current chlor-alkali plants are rated at from 8 MW to 10 MW of power per electrolyzer, with 
10 or more such units per plant. Despite lower current density than used in PEM water 
electrolysis (typically 600 A/cm2 versus 1,000 to 2,000 A/cm2), the rating per unit is greater than 
in current PEM development due to a much larger active area (typically 3 m2 versus 0.3 m2). 
Historically, however, large industrial electrolysis plants have been alkaline. The largest such 
plant still in operation— the KIMA fertilizer plant in Aswan, Egypt—has a reported capacity of 
74,000 kg/day (about 150 MW), but all other plants with similar capacities have closed. 

A typical electrolysis process diagram is shown in Figure 1. Note that different processes use 
different pieces of equipment. For example, PEM units do not require the KOH mixing tank 
because no electrolytic solution is needed for these electrolyzers. Another example involves 
water purification equipment. Water quality requirements differ across electrolyzers; some units 
include water purification inside their hydrogen generation unit, and others require an external 
deionizer or reverse-osmosis unit to purify water before it is fed to the cell stacks. The PEM units 
typically require much greater water purity than do the alkaline units. A water storage tank can 
be included to ensure that the process has adequate water available in storage, in case the water 
system is interrupted. Each system has a hydrogen generation unit that integrates the electrolysis 
stack, gas purification and dryer, and heat removal. Electrolyte circulation also is included in the 
electrolyzer module or is installed as a complete package. Oxygen and purified hydrogen are 
produced from the generation unit. 
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Figure 1. Electrolysis process flow diagrams 

Since the last milestone report was written,2 PEM electrolyzer suppliers have continued to focus 
development efforts on reducing capital costs and improving efficiency. New material choices 
have been incorporated and cell structures have been simplified to reduce cost and increase 
manufacturability. An example of this is stamped metal bipolar plates. A spin-off from 
advancing hydrogen fuel cell technology, current development is directed at meeting the twenty-
fold increased life requirement of the electrolysis application and providing the cost leverage of 
replacing the machined cell configurations. Cell design also has benefited from dimensional 
changes directed at increasing cell active area and reducing cell resistance, thus increasing 
efficiency. 

In addition to these cell hardware improvements, PEM suppliers have developed thinner, more 
robust membranes including, in some cases, shifts from solid Nafion® to composite membrane 
configurations. To improve electrolyzer efficiency, and thereby reduce operating and capital 
costs, an advanced thin rigid polymer supported membrane having resistance comparable to that 
of a 0.002 inch thick Nafion® 112 membrane—but with significantly improved mechanical 
properties—is being tested. This advanced membrane is referred to as a dimensionally stable 
membrane (DSM) because the membrane support minimizes changes in membrane dimensions 
(swelling/contraction) with changes in water content. 

The PEM electrode assemblies traditionally use high noble metal catalyst loadings. These 
electrodes provide high performance and reliability but they are very expensive, particularly with 
the present high cost of platinum. Catalyst formulations have been altered, and reduced catalyst 
loadings are being validated to lower costs yet still provide the required system life and 
electrolyzer performance. Suppliers are applying recent developments in fuel cell catalyst 
technology to the electrolyzer electrodes. For example, a new cathode consisting of platinum 
supported on carbon black catalyst blended with Nafion® ionomer—similar to the composition 
successfully used in PEM fuel cells—is being tested. This electrode has a total catalyst loading 
that results in a reduction of more than 85% as compared to the baseline. 

                                                 
 
2 Levene, J.; Ramsden, T. (January 2007). Summary of Electrolytic Hydrogen Production. Milestone Report. 
NREL/MP-560-41099. Golden, CO: National Renewable Energy Laboratory. 
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All of the PEM electrolyzer companies consulted have developed systems that can produce 
hydrogen at a pressure of at least 300 psi without the use of a gas compressor. This is done by 
either pressurizing the feed or using electrochemical compression within the electrolyzer. The 
companies have developed the necessary sealing technology to accommodate high-pressure 
operation. 

Alkaline electrolyzer improvements are also being pursued. These developments typically target 
reduced capital costs by increasing pressure, reducing complexity, using novel materials, 
increasing current density, or performing a combination of these methods. Elevated pressures are 
achieved by either making the seals withstand pressure or surrounding the electrolyzer with a 
pressure vessel capable of reaching pressures greater than 400 psi.3 Designs are tested both with 
balanced H2/O2 pressure and with a significant pressure difference across the membrane. Metal 
components—such as frames and supports—are being substituted with molded polymers or 
elastomers. Current densities are increased from a conventional level of 200 mA/cm2 to 
approximately 1,000 mA/cm2 by using new membranes and reducing gaps between electrodes. 

One vendor, for example, describes a pressurized hydrogen generator module for large-scale 
applications designed to be compact, flexible, and efficient. Improved energy efficiency and a 
small footprint are achieved by operating at 300 psi, eliminating pumps by using self-circulation 
of the lye system, and performing integrated gas separation within the module. The use of 
separate electrolyte circulation on the anode side and cathode side enhances gas purity. Full-scale 
tests have shown that gas taken directly from the cell stack exhibits oxygen impurities of less 
than 0.6% and hydrogen impurities of less than 0.1%. 

4.1.2 Capital Costs 
The direct capital cost of the hydrogen plant is one of the three most significant parameters in 
calculating the total cost of hydrogen from electrolysis—the other two being the cost of 
electricity and the electrolyzer efficiency. Information was gathered for both cost and efficiency 
from open sources and from interested suppliers. Suppliers’ cost estimates were to be based on 
“state-of-the-art current technology”—the best technology that they have demonstrated, at least 
in the laboratory. The estimates therefore involve some extrapolation and scale-up to commercial 
electrolysis units, providing the suppliers with several challenges. 

• Cost projections of the electrolyzer cell stack are based on limited experience and 
frequently on smaller cells and fewer cells per stack. 

• Pricing experience for purchased components is based on lab- or pilot-scale procurement, 
thus requiring electrolyzer companies to work with vendors and extrapolate prices to 
greater volumes. 

                                                 
 
3 In one extreme case, hydrogen pressures in excess of 5,000 psi were reported. 
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• Limited experience of some suppliers/developers in designing, estimating, and 
purchasing balance-of-plant (BOP) equipment such as transformers, rectifiers, and 
control systems. 

• Cost projections for developed markets were requested, specifically for 500 identical 
units per year for the forecourt design, and a repeat installation of “the nth plant” for the 
central case. The manufacturing methods and the supply chains needed for this scale have 
not been developed, and the expected cost reductions are not well understood. 

Despite these challenges, suppliers were asked to provide cost estimates for purchased plants for 
forecourts and for the complete designed and installed (turnkey) central plant case by completing 
the Fact Sheet shown in Appendix A. 

Most process plants have a non-linear relationship between the cost of the plant and its 
production capacity. This is known as the power law, and generally is expressed as follows. 

C = Wn 

Where C is the capital cost of the plant ($) and W is the capacity (e.g., kilograms per day). The 
exponent n typically has a value of between 0.6 and 0.8, depending on the type of plant. This 
gives an economy of scale because costs increase less than proportionally as capacity is 
increased. Power law relationships generally hold up to a maximum value of W, which reflects 
the maximum practical size of the limiting process unit. For greater total capacities, parallel units 
must be installed and the cost relationship becomes linear or nearly so (n approaches 1). 

For electrolyzers the limiting unit is the cell stack itself. The area of each electrode is limited 
both by manufacturing and by fluid dynamics, and the number of cells in a stack is limited by 
tolerances in manufacturing and by the need to avoid excessive voltages across the stack. The 
largest commercial electrolyzer cell stacks today have a capacity on the order of 1,000 kg-H2 per 
day. For greater capacities, several parallel cells stacks can be placed in one electrolyzer and/or 
several electrolyzers can be installed, with some sharing of utilities such as power electronics 
and controls and possibly other balance-of-plant components. As a first approximation, a power 
law cost relationship is expected to hold up to the capacity of the individual cell stack, and costs 
increase nearly linearly with capacities beyond this point. Sources in the industry have confirmed 
that a power law relationship with an exponent n of between 0.6 and 0.7 seems to hold for a wide 
range of capacities in today’s market—up to about 1,000 kg/day. 

The aggregate vendor data do not validate the power law model for electrolyzer costs. In fact, 
there is no significant correlation between cell size or unit capacity and total cost in the Panel’s 
data. Differences between vendor technologies seem to overshadow this effect, but it is 
reasonable to assume that within one technology a power law still holds. This implies that further 
developments could devise technologies that increase the largest available cell stack size, and 
thus the total capital cost could be reduced significantly. 

Traditionally, PEM electrolyzers have targeted the smaller capacities, and alkaline systems have 
dominated the high-capacity industrial market. The PEM developers are striving towards larger 
cell sizes and larger stacks, but even in anticipation of this development most PEM suppliers 
hesitate to go beyond 500 kg/day per cell stack in their projections. Many base designs on cell 
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stacks having a capacity of less than 250 kg-H2/day. Two suppliers of alkaline technology 
project a capacity of 1,500 kg/day in an individual cell stack, but this also is dependent on 
successful scale-up and demonstration of their technologies. 

Consequently, the central case and, for some technologies, even the forecourt case involve installa-
tion of multiple electrolyzers in parallel. (A central plant with a capacity of 50,000 kg/day would 
have in excess of 50 cell stacks.) This gives a cost penalty compared to a situation in which the size 
of each unit is increased; suggesting that increasing the maximum unit size of each electrolyzer can 
be a cost reduction target in itself, particularly for large installations. Having multiple units in 
parallel also has benefits, however, as it allows for maintenance and unscheduled shutdowns of 
individual electrolyzer units and leaves the rest of the plant operational. 

Balance-of-plant costs—dominated by items like transformers, rectifiers, and control system—
comprise a significant portion of the total installed costs. The BOP also includes water 
purification, hydrogen dryer, and a hydrogen purifier if needed. The estimated percentage varies 
considerably between suppliers (from 34% to 86% of the total cost excluding storage and 
dispensing), emphasizing the uncertainty in these estimates and for how each supplier draws the 
line between the electrolyzer and BOP. Most development work to reduce the cost of electrolysis 
focuses on the cost of the cell stack. Realizing that the BOP might cost as much, these items 
should receive attention as well. 

Looking ahead at a developed market for the current state-of-the-art technology requires methods 
for estimating cost reductions as the number of units increases by orders of magnitude. 
Installation of 500 forecourt electrolyzer operations per year, each with a capacity of 1,500 kg of 
hydrogen per day, equals more than the current global industrial market for this size electrolyzer. 
Suppliers of small PEM electrolyzers probably are in the best position to estimate the effect of 
manufacturing a great number of identical units, but they must extrapolate to considerably 
greater unit capacities than those with which they are experienced. Conversely, suppliers of 
alkaline units have capacities that are closer to those needed but have limited experience with 
high-volume manufacturing. In both cases the cost projections are uncertain. The consensus 
seems to be that a developed market will see unit costs coming down by a factor of two or more 
as compared with low-volume manufacturing. New manufacturing methods and new supply 
chains should be studied to verify that this cost reduction is achievable. In the Panel’s view, such 
reductions remain a realistic assumption. Drawing on mass manufacturing developments for fuel 
cells also can contribute to reduced unit costs for electrolyzers. 

As long as the maximum capacity of individual electrolyzer cell stacks is less than or equal to the 
capacity needed for the forecourt case (1,500 kg/day), the total installed cost per unit capacity 
will be roughly the same for both the forecourt and central production cases, excluding other 
capital considerations such as buildings, compression, storage, and dispensing costs. A forecourt 
refueling station will be based on containerized prefabricated units and the central plant will have 
a more open layout; there also will be other differences in the scope. 

Figure 2 shows the range of capital costs (obtained from electrolyzer companies) as a function of 
capacity. There is no relationship between capital cost and capacity due to the variety of tech-
nologies represented and perhaps differences in capability and approaches used to project costs 
to the large market volumes requested (as discussed above). Within the uncertainty of the 
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collected information, however, the Panel thinks a fair number to be used for the purchased 
capital cost is $800 per kilogram per day of capacity (in 2005 reference year dollars4) giving a 
total purchased cost of $1.2 million (in 2005 reference year dollars) for the forecourt case. The 
central case is based on estimating the total depreciable costs (turnkey) which—with roughly the 
same purchased cost for the electrolyzer units—is found to be $50 million (in 2005 reference 
year dollars). Both estimates assume that the capacity of each electrolyzer unit will not exceed 
1,000 kg/day. 
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Figure 2. Vendor capital cost information (in 2005 reference year dollars4) 

The spread in cost data from the suppliers is considerable, with unit costs varying from $370 to 
$1,600 per kilogram per day. Part of the discrepancy can be explained by differences in 
technology and high-volume projection approaches, but it also is thought that the degree to 
which the vendors have anticipated successful new development in technology, design, and 
manufacturing varies. Overall, the data given by suppliers is considered to have an optimistic 
bias when seen as estimates for state-of-the-art technologies and those that could be commercial 
within four years. The base-case cost estimates reflect this, as they are greater than the mean of 
the data from the suppliers. 

The choice of capital cost to be used as input in the H2A model does not imply a specific 
technology or vendor. Even the choice between PEM and alkaline remains open, as our numbers 
indicate that PEM could have the potential for reduced cell stack costs but using somewhat 
smaller unit capacities than those of the alkaline technologies. Within the margin of error, these 
effects compensate for one another. 
                                                 
 
4 The DOE Hydrogen Program expresses cost information in 2005 reference-year dollars and asked the Panel to do 
the same. The Panel converted the cost information it received (in 2008 dollars) to 2005 dollars using EIA data. See 
Section 5.3. One vendor data point at a unit cost of $4,000,000 (k$4000) is not shown on the graph. 

 9



4.1.3 Electricity Costs 
Our analysis finds that electricity costs are a major contributor to the overall cost of hydrogen. 
As is shown in Section 5.3, electricity accounts for nearly 80% of the cost of hydrogen from 
electrolysis using current state-of-the-art technology. An initial cost boundary analysis was 
completed to determine the effect of electricity price on hydrogen costs. For the range of 
electrolyzers studied, the specific system energy requirement (see Section 5.3) was used to 
determine the electricity cost to produce hydrogen as a function of the price of the electricity and 
is shown in Figure 3. A line showing the theoretical electricity cost at 100% (HHV) efficiency 
also is included in the figure. No capital, operations and maintenance (O&M), or other costs are 
included in the calculation. As shown in Figure 3, at current (2009) state-of-the-art electrolyzer 
efficiencies, the electricity cost of producing hydrogen is $2/kg to $3/kg at typical industrial 
electricity prices of $0.04/kWh to $0.06/kWh. This can be compared to the overall DOE 
Hydrogen Program long-term goal of delivered hydrogen costing $2/kg to $3/kg. The delivered 
cost includes not only all the other production cost contributions (e.g., capital, O&M) but also 
the cost of hydrogen delivery. For the case of forecourt operations this includes the refueling 
station operations of compression, storage, and dispensing. For central production it includes 
these refueling site costs plus the cost to transport the hydrogen from the central plant to the 
refueling station. 
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Figure 3. Influence of electricity cost alone on hydrogen cost  
(without capital, operating, or maintenance costs) 

The electricity consumption of a forecourt or central production installation should be eligible 
for industrial electricity rates due to the amount of electricity consumed. Data from Energy 
Information Administration (EIA) shows a great variation among U.S. states in wholesale and 
retail electric costs for the commercial, industrial, and transportation sectors. Figure 3 shows the 
state-by-state variation for the industrial sector for the year 2007. The data shows that the 
industrial price for electricity varies from a low of $0.0387 per kilowatt-hour in Idaho to a high 
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of $0.1838 per kilowatt-hour in Hawaii. Figure 4 shows EIA data on the average and spread of 
data in the United States for the years 1990 through 2008. For electrolysis to be priced 
competitively for hydrogen production, it must be produced in areas having low-priced 
electricity for the industrial sector. The U.S. average price is $0.0639/kWh. 

One additional approach that should be considered to reduce electricity cost is the use of 
interruptible power. The local utility establishes the minimum demand level, notification time, 
and interruption duration for the service, and qualifying customers could see a 10% to 30% 
reduction in the price of electricity. To minimize the impact of a power interruption, the outage 
duration and frequency should be evaluated against the cost of the potential reduction in 
production capacity and the increase in storage required to meet hydrogen demand needs. One 
striking advantage of electrolysis hydrogen production is its ability to essentially instantaneously 
decrease, stop, and increase production rates compared with much more slowly responding 
thermochemical production options. This makes electrolysis particularly well suited to try to take 
advantage of interruptible power rates. 

 

Figure 4. Average industrial price for electricity by state5 

For the purposes of this assessment, the Panel was instructed by DOE to use the price of 
electricity for the forecourt projected by the EIA AEO 2005 High A case from 2005 through 
2025. This average is $0.053/kWh. For the central electrolysis case DOE provided a cost of 
$0.045/kWh based on renewable electricity. See Section 5.3 for more details. 

                                                 
 
5 Energy Information Administration (January 2009). Electric Power Annual with Data for 2007. Figure 7.7. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html. Accessed September 21, 2009. 
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Figure 5. Historical variation in the average retail rate for the industrial sector 

4.1.4 Energy Efficiency 
 Based on information provided by electrolyzer suppliers for their state-of-the art technologies, 
both alkaline and PEM electrolyzers are now capable of producing hydrogen using less than 50  
kWh/kg, representing a lower heating value efficiency of greater than 67% (see below for a 
detailed discussion of lower heating value versus higher heating value efficiency). Note that this 
refers to the complete electrolysis operation and includes the power electronics and other balance 
of plant components (e.g. dryer). The efficiency of the electrolyzer stack is higher, with cell 
efficiencies as high as 74% LHV. These efficiency gains reflect development work of both PEM 
and alkaline electrolyzer suppliers to reduce the energy consumption of the electrolyzers. 
Reduced membrane thickness and more compact cell designs reduce ohmic losses, more efficient 
catalysts and improved hydrodynamics at the electrode surface reduce over-voltages on both 
anodes and cathodes.    

It is not likely, however, that the PEM and alkaline technologies evaluated here will achieve 
significantly greater cell efficiencies. The technologies are at the point of diminishing returns on 
efficiency, and the scope for further improvement is likely to be more focused on further capital 
cost reduction, reliability and durability, and the scale-up to greater capacities. A shift in 
technology platform however—for instance by introducing high temperature electrolysis—could 
increase the expected efficiencies. All the technologies evaluated for this report operate at 
conventional temperatures of between 70°C and 85˚C, and use only electric energy to drive the 
process. 

The total energy spent to produce hydrogen exceeds that of the electrolyzer stack. The balance of 
plant has ohmic and thermal losses in power electronics, pumps, and auxiliaries. For some 
technologies there also can be a loss of hydrogen through purging and venting which reduce the 
net efficiency of usable hydrogen production. The energy use outside the electrolyzer represents 
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an additional 5% to 10% loss. Some further improvement in these parasitic losses might be 
possible. Such losses could be significantly greater if compression is needed to reach the 300 
psig pressure specified at the electrolysis plant outlet. Most technologies under development 
operate the electrolysis at this pressure or at greater pressures, eliminating the need for a first-
stage compression to 300 psig. Compression for storage and dispensing is handled separately. 

To better understand electrolyzer efficiencies as reported, it is important to recognize the 
differences between lower heating value (LHV) and higher heating value (HHV) efficiency. 
According to Faraday’s law, the amount of chemical change during electrolysis is proportional to 
the charge passed. In other words, the current passing through an electrolysis cell defines the rate 
of hydrogen (and oxygen) being produced. This relationship also holds true for commercial 
electrolyzers because leakage currents between cells normally are negligible. In numerical terms, 
the rate of production per cell is as follows. 

Wv = 0.41 * I 

Where Wv is the volumetric rate of production of hydrogen (Nm3/h) and I is the current through 
the cell (kA). In mass-flow terms, this becomes the following. 

W = 0.89 * I 

Where W is the rate of production of hydrogen in kilograms per day. 

The theoretical total energy needed to split the water molecule is defined by the heat of reaction, 
which is the reverse of the heat of combustion (heating value) of hydrogen. Values convention-
ally are given as either HHV or LHV, based on the end-product of combustion being either 
liquid water or water vapor.6 Using units that are useful for this exercise, the heating values for 
hydrogen are HHV: 39.42 kWh/kg and LHV: 33.31 kWh/kg. Most practical electrolyzers use 
liquid water as feed, making it reasonable to refer energy efficiencies to the higher heating value. 
It is conventional, however, to refer to LHV for efficiencies of both electrolyzers and fuel cells; 
100% HHV efficiency (ηH = 100%) translates into 84.5 % efficiency based on LHV 
(ηL = 84.5%). 

The electric energy consumption in electrolysis is directly proportional to the cell voltage that 
must be applied, because current and mass flow are directly proportional and power equals 
current times voltage. The minimum reversible voltage is 1.23 V, equivalent to the change in 
Gibb’s free energy for the reaction. This reflects the minimum amount of energy that must be 
applied as electricity; the total energy is greater. A more realistic number is 1.48 V, the voltage 
required at ηH = 100% (ηL = 84.5%). This is known as the thermoneutral voltage, and it 
represents a 100% electric energy efficient electrolyzer that has electricity as its only energy 
input. An electrolyzer with a lower voltage (i.e., ηL > 84.5%) requires some of its energy input 
from non-electric sources, such as thermal energy. This is relevant mostly for future high 
temperature electrolyzer technologies. 

                                                 
 
6 The heating value definitions also vary with respect to the end temperature of the combustion products. 
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4.1.5 Working Capital 
For most process plants, working capital is predominantly the storage of raw materials and 
products. In the case of the central electrolysis plant this part of working capital is not relevant. 
Electricity and water—the raw materials—are used on demand. The hydrogen product is 
assumed to be exported through a pipeline on a continuous basis, as discussed above. 

Working capital is needed for purchasing spare parts for critical components, however. 
Specifically, one or two complete electrolyzer units should be available to achieve the high 
availabilities assumed in Section 4.3.1, and key parts or complete spares of non-duplicated 
critical units should be stored on-site. Working capital commonly is defined in terms of the 
change in percentage of the annual operating cost. The Panel, using this definition, has set the 
expected working capital (somewhat arbitrarily) at 5%—considering this to be adequate for any 
reasonable O&M strategy for a central plant. For the forecourt case the working capital was set 
even lower, at 1% of annual operating cost. In this case, a shared maintenance program that 
serves a great number of stations is expected, so each station has little need for working capital.  

This is in contrast to other DOE published H2A hydrogen production cases which use 15% for 
working capital. Most of these DOE cases are for thermochemical processes that require 
significant working capital for raw material storage and more spare parts for these more complex 
processing operations. The DOE H2A forecourt and central electrolysis cases also adopted the 
15% working capital figure. The sensitivity analysis in Section 5.4 shows that the hydrogen cost 
is not sensitive to these working capital assumptions. 

4.2 Forecourt Electrolysis 
4.2.1 Capacity Factor and Storage 
The primary cost drivers for electrolysis are capital cost, electricity price, and electrolysis 
efficiency. The capacity factor of the electrolysis production unit, however, can impact the 
delivered cost of hydrogen at a forecourt refueling station. Although the Panel was not asked to 
review the refueling station compression, storage, and dispenser elements (C/S/D), it knew that 
the production unit capacity factor was dependent on the amount of storage available. The Panel 
called upon two recognized experts—Amgad Elgowainy (Argonne National Laboratory) and 
Brian James (Directed Technologies Inc.)—to help the Panel understand this interaction and the 
basis for the capacity factor used in the published H2A forecourt electrolysis case. The latest 
H2A Forecourt Production Model (version 2) is based on the work conducted in this area by 
Elgowainy and James. Based on these discussions, the Panel felt that the methodology used in 
the H2A Forecourt Production Model might more appropriately be revised based on the 
capabilities of electrolyzer production technologies. A description of this revised approach is 
provided in Appendix B, in a white paper co-authored by Elgowainy and James. 

Based on Appendix B, the key parameters that determine the forecourt production unit capacity 
factor (and the station low-pressure storage needs) are shown in Table 2 (below). The table 
shows the values used for these parameters in the DOE published H2A Current Forecourt 
Hydrogen Production from Grid Electrolysis (1,500 kg/day) version 2.1.2, which was the starting 
point for this Panel (see Section 5.2), as well as the values that the Panel thinks are most 
appropriate to represent current (2009) state-of-the-art forecourt electrolysis technology. 
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Table 2. Key Parameters for the Forecourt Production Unit Capacity Factor 

Parameter Units 
Current H2A 

Electrolysis Case 
Panel 

Consensus
Duration Days 120 120 

Summer Peak Demand 
Excess Demand % Greater than Average 10 10 

Duration Days 120 120 
Winter Low Demand 

Reduced Demand % Less than Average 10 10 

Weekday Peak Demand Excess Demand % Greater than Average 13 13 

Scheduled Annual Maintenance Duration Days 14 5 

Frequency #/Year 6 4 
Unscheduled Maintenance 

Duration Hours 14 14 
Minimum Time  
Between Occurrences Interval Days 30 30 

 
The first five parameters in Table 2 relate to data collected by the DOE H2A Hydrogen Delivery 
effort and were left unchanged. The last four variables were discussed by the Panel both 
internally and with various electrolyzer vendors. One of the advantages of electrolysis is that 
there are very few moving parts and the operations occur under relatively mild conditions. Based 
on discussions with vendors, the Panel has set the scheduled annual maintenance at 5 days and 
split into one 3-day event and one 2-day event. Unscheduled maintenance is expected to be rare, 
but the Panel agreed on 4 times per year, 14 hour duration, and a minimum time of 30 days 
between the events. The 14 hour duration is to provide sufficient time for any necessary parts to 
arrive at the site and be installed, as is assumed in all the published H2A forecourt cases. 

Using these parameters and the equations in Appendix B, the calculated operating capacity is 
87.8%—compared with 85.2% in the DOE published H2A Current Forecourt Hydrogen Produc-
tion from Grid Electrolysis (1,500 kg/day) version 2.1.2. This increase in the production capacity 
factor reduces the hydrogen delivered cost by about $0.06 per kilogram. The equations in 
Appendix B also calculate the amount of usable low-pressure storage required at the station as 
1,500 kg H2 versus the 1,380 kg of H2 in the DOE published forecourt case (1,500 kg/day). This 
results in an increase in the delivered cost of hydrogen of about $0.12 per kilogram. Thus, the 
change of the parameters as indicated in Table 2 results in a net increase in the delivered cost of 
hydrogen of about $0.06 per kilogram. The Panel believes this to be the more appropriate 
method for calculating forecourt production capacity factors and storage needs. The actual result 
will depend on the assumed values of input parameters. 

4.2.2 Power Services Capital Costs 
The typical 3 MW forecourt electrolyzer system requires a capital expenditure to cover the cost 
of electrical installation and connection to the electric grid. These costs can include electrical 
system upgrades, transformers, and trenching. Based on its discussions with utility sector 
experts, the Panel learned that utilities typically provide some sort of line extension policy for 
large commercial customers to help defray the capital costs associated with electrical installation 
and hookup. In some cases, utilities require some level of customer “contributions in aid” of 
construction and installation, typically 10% to 20% of the costs incurred. In these instances, a 
typical 3 MW forecourt facility could require a customer contribution in aid of between $50,000 
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and $100,000. Many other utilities provide new customers with a construction credit allowance 
to cover the cost of electrical hookups. A new 3 MW commercial load might be provided a 
construction credit allowance of between $500,000 and $1 million—which is more than adequate 
to cover typical electrical installation costs for a forecourt facility. 

In the Panel’s cost analysis of forecourt production, no additional capital costs were included for 
electrical installation, based on an assumption that utility construction credit allowances would 
cover these costs (and the installation costs would be subsumed under the per kilowatt-hour rate 
charges). For installations in areas served by utilities that require customer contributions in aid, 
the additional expected additional installation costs would not appreciably affect the resulting 
cost of hydrogen production. 

4.2.3 Cooling 
Electrolyzers require cooling. For a typical 3 MW forecourt installation with a LHV energy 
efficiency of 67%, roughly 1 MW of cooling is required, using approximately 390 gpm of 
cooling water.7 The cost for cooling water does not contribute significantly to the total cost of 
hydrogen, but in some locations the availability of water can be limited. In such cases, an air 
cooler could be supplied with the electrolyzer, reducing the cooling water consumption but 
increasing the capital costs slightly. These variations are within the margin of error in calculating 
hydrogen costs. The Panel used cooling water in its estimates. 

4.3 Central Production 
4.3.1 Capacity Factor (Central Plant) 
The plant capacity factor is the net production per year divided by the theoretical output capacity 
of the plant. For a central plant, three factors can reduce the capacity factor: 

• Insufficient or no power available for production; 

• Partial or total shutdown of the hydrogen production plant, including electrolyzers; and 

• Limited demand for hydrogen, requiring plant operation at reduced capacity. 

Based on input from vendors and its own experience, the Panel estimated that a mature design 
(“the nth plant”) should be able to see a capacity factor of 98% for the hydrogen plant itself. This 
only is an estimate, because such plants have not been built for decades and none of the suppliers 
has designed such a complete plant. Additionally, the demand side has not been considered in 
this evaluation of the capacity factor. The assumption is that a pipeline or other suitable delivery 
option with buffer storage always is available to take off the hydrogen being produced. 

In the definition for the central case, the basic assumption is that the electrolysis plant is 
connected to a grid supplying renewable power—this assumes that the grid is stable and reliable, 
and neglects any unavailability of power. If an electricity contract for “interruptible power” at 
reduced rates is introduced (see Section 4.1.3), then a forced shutdown must be expected at some 
interval, thus reducing the capacity factor. Such interruptible power has not been taken into 

                                                 
 
7 Once-through cooling water with a temperature increase of 10˚C, ignoring ambient heat losses. 

 16



account in the present evaluations; if it were, then the frequency and duration of contract-based 
outages would require evaluation for specific cases. 

A standalone wind hydrogen plant has a very different capacity factor. Variability of power 
generated from the wind turbines translates directly into a reduced capacity factor for the 
hydrogen plant, unless the installed power of the turbines is much greater than that of the 
electrolyzers. Capacity factors for current large wind farms can be as low as 40%. 

For a central plant with a great number of parallel electrolyzer units (50 or more; see Section 
4.1.2), planned and unscheduled maintenance of the electrolyzers both reduce the output of the 
plant by only one-fiftieth during the partial shutdown. Taking out each of the units for one week 
per year on a rotational basis, for example, reduces the overall capacity factor by 2%. Even this 
is a more frequent repair than should be expected. Total shutdown only occurs if one of the 
non-parallel units fails. Examples include control and safety systems, compressors, and cooling 
water supply. Sound design engineering should include a mean time of several years between 
failures for such systems. 

In evaluating capacity factors for electrolyzers it is important to recognize that they often can 
restart immediately following a brief loss of power, and they also respond very quickly to 
variable supply (power) or demand by increasing or decreasing production. Both the 
characteristics of the individual electrolyzer unit and the multi-parallel design provide a 
flexibility which makes very high capacity factors realistic. 

4.3.2 Land Costs 
The H2A published central production cases use a land cost of $5,000 per acre. More recently, 
however, DOE had Directed Technologies, Inc. (DTI) conduct research in this area. Based on 
DTI’s research, $50,000 per acre is a more suitable value for an average land cost for a central 
production plant located at or beyond the edge of a U.S. city. This value was adopted in the 
H2A Delivery Model, version 2,8 and the Panel also elected to use it. Land is such a small part of 
the cost of hydrogen from a central electrolysis plant that the change had no impact on the cost of 
the hydrogen produced. 

4.3.3 Power Services Capital Costs 
Based on the instructions from the DOE Hydrogen Program, it was assumed that the central 
electrolysis plant received renewable based electricity from some source. The Panel discussed 
whether the cost of the electrolysis plant should include some capital cost for power lines and 
other electrical servicing equipment, and decided not to include such costs. Renewable wind, 
solar, geothermal, and hydroelectric electricity plants only will be located in the areas of the 
country where those resources are available. It could be very costly to run power lines from these 
renewable electricity plants to electrolysis plants unless the electrolysis plants were co-located or 
located very near the renewable electricity plants. The Panel thinks this should be a consideration 
when analyzing the cost of hydrogen produced from central electrolysis plants based on 
renewable electricity. Based on limited discussions with utility companies, these capital costs 
might be absorbed by the utility companies but the cost would be reflected in the electricity price. 

                                                 
 
8 Http://www.hydrogen.energy.gov/h2a_analysis.html. Accessed September 19, 2009. 
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4.3.4 Buildings Capital Costs 
As discussed in Section 4.1.2, it is challenging for an electrolyzer company to estimate the all in 
capital costs for a large central electrolysis plant. These companies are in the business of selling 
electrolyzer units and not in the business of designing and constructing complete turnkey central 
plants. The Panel noticed, for example, that none of the vendors specifically mentioned buildings 
in their estimates. Therefore a capital cost of $3 million for buildings was added to the estimates 
the Panel received. This was based on examination of other DOE published H2A central plant 
cases, such as for biomass gasification and coal gasification. The $3 million is somewhat less 
than the building costs used for the thermochemical plants because those plants are larger and 
more complex. 

4.3.5 Cooling Costs 
In the large-scale central case—requiring 100 MW of electric power input—the cooling water 
consumption is proportionally more than that of the forecourt installation. For once-through 
cooling, more than 10,000 gpm (15 million to 20 million gallons per day) of water9 is needed. In 
this case, evaporative cooling using a cooling tower often is preferable. This reduces the water 
consumption by a factor of about 50 and increases direct capital cost. The Panel’s calculations 
are based on once-through cooling and typical costs for industrial water, but other more realistic 
scenarios would have a similar, and limited, impact on the final costs. 

5 Panel H2A Modeling Analysis 

5.1 H2A Model Introduction 
The DOE Hydrogen Analysis (H2A) effort was organized to develop the building blocks and 
framework needed to conduct consistent and transparent cost, energy efficiency, and greenhouse 
gas (GHG) analyses of hydrogen production and delivery over a wide range of hydrogen 
technologies. Initiated in fiscal year 2003, the H2A effort has brought together the analysis 
expertise in the hydrogen community, drawing from industry, academia, and the national 
laboratories. There currently are four H2A Excel-based models for hydrogen technology 
analysis. 

• H2A Distributed Forecourt Production and Refueling Model 
(50 kg/day to 6,000 kg/day production) 

• H2A Central Production Model (≥ 50,000 kg/day production) 

• H2A Delivery Components Model 

• H2A Delivery Scenario Analysis Model (HDSAM) 

In addition to the models, DOE contracted analysis experts to develop production and delivery 
cases for various production technologies and delivery pathways. The models and cases have 
been vetted by appropriate industry experts and other experts on hydrogen technologies and 
costs. Both of the H2A models and cases can be found at http://www.hydrogen.energy.gov/ 
h2a_analysis.html. 

                                                 
 
9 Once-through cooling water with a temperature increase of 10˚C. 
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5.2 H2A Modeling Analyses Provided 
All of the DOE H2A cases were available to the Panel through DOE’s H2A website. Most 
pertinent were the two current cases on hydrogen production utilizing electrolysis: 

• Current Forecourt Hydrogen Production from Grid Electrolysis (1,500 kg/day) 
version 2.1.2; and 

• Current Central Hydrogen Production from Grid Electrolysis version 2.1.1. 

It is the Panel’s understanding that these analyses are meant to roughly characterize 
2005 electrolysis technology, based on when these analyses first were generated. The Panel’s 
data gathering efforts tended to confirm the validity of the capital costs and electrolysis operating 
efficiencies in these H2A model analyses for 2005 technology. 

5.3 Panel Baseline H2A Modeling Analysis 
The Panel was asked by DOE to express results in 2005 reference year dollars. The cost 
information obtained was presumed to be in 2008 dollars. To convert these to 2005 dollars to 
account for inflation, a factor of 0.922 was used. This deflation was based on information 
supplied by DOE from the most recent EIA AEO. All dollar figures in this report are expressed 
in 2005 dollars. 

5.3.1 Distributed Forecourt Production Base Case 
The Panel determined that, since 2005, there has been significant technology advancement in 
PEM and alkaline electrolysis which is applicable to distributed forecourt hydrogen production 
as represented in the estimated cost reduction presented below (and discussed in Section 4.1.1). 
The net change in hydrogen cost between the DOE published H2A Case for 2005 technology and 
the Panel’s base case for current (2009) state-of-the-art technology is a reduction of $0.86/kg of 
hydrogen (see Table 3). 

The starting point for the Panel’s analysis was the H2A Current Forecourt Hydrogen Production 
from Grid Electrolysis (1,500 kg per day) version 2.1.2. All of the input parameters used in this 
case were examined and compared with all the information that was gathered as well as Panel 
members’ own knowledge and experience. The parameters were modified as appropriate to 
represent the Panel’s conclusions for state-of-the-art 2009 electrolysis technology to establish a 
base case.  

Many of the H2A model input parameters were left unchanged, as deemed appropriate. This 
included all of the standard “H2A Default Values” for financial inputs and fixed and operating 
costs, with the one exception of working capital (discussed in Section 4.1.5). Also included were 
many other inputs, such as parameters concerning construction time and start-up, indirect capital 
costs, most of the fixed operating costs, and some of the other variable costs. No refueling station 
compression, storage, and dispensing (C/S/D) inputs were changed, with the exception of 
adjusting the low-pressure storage amount (as discussed in Section 4.2.1). 

The inputs that were changed are shown in Table 3. This table also shows the range of the values 
for these inputs that were provided by the participating electrolyzer companies, the values from 
the H2A Current Forecourt Hydrogen Production from Grid Electrolysis (1,500 kg per day) 
version 2.1.2 (H2A Case) meant to represent 2005 technology, and the Panel’s base-case values. 
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Also shown is the stepwise and cumulative change in the hydrogen cost, starting with the H2A 
Case.  

Table 3. Panel Forecourt Production Base Case 

$4.23 $1.82 $6.05
Production Purchased Capital Cost (M$) $0.57 to $1.4 $1.20 $2.26M $3.65 $1.79 $5.44 ($0.61)

($0.19)

($0.09)

($0.06)

($0.07)

($0.04)
($0.91) ($0.86)

 

Total Energy  (kWh/kg) 48‐59 50.0 53.4 $3.46 $1.79 $5.25
Electricity Price NA $.055/kWh EIA $.055/kWh EIA $3.46 $1.79 $5.25 $0.00
Production Maintenance (% of Purchased Capital) 0.02% to 2.6% $0.02 $0.06 $3.37 $1.79 $5.16
Electrolyzer Cells Capital Replacement  (k$)                             
(% of Total Production Purchased Capital)

$38 to $600     
7% to 45%

$420           
35%

$744             
33%

$3.37  $1.79  $5.16 $0.00

Eletrolyzer Cell Replacement Interval (yr) 7 to 10 7 10 $3.42  $1.79  $5.21 $0.05
Op. Capacity Factor NA 88% 85% $3.40 $1.75 $5.15
C/S/D LP Storage (kg) NA 1691.00 1424.00 $3.40 $1.87 $5.27 $0.12
Working Capital (% of Change in Operating Costs) NA 1% 15% $3.33 $1.87 $5.20
C/S/D Electrical Upgrade Installed Capital Cost (k$) NA $0.00 $76.7 $3.33 $1.87 $5.20 $0.00
Process Water (gal/kg‐H2) 2.3 to 2.9 2.50 2.94 $3.33 $1.87 $5.20 $0.00
Cooling Water (gal/kg‐H2) 0.1 to 290 290.00 0.10 $3.36 $1.87 $5.23 $0.03
All other Variable Costs (k$/yr) NG $0.00 $19.40 $3.32 $1.87 $5.19

$0.05

Delta Total 
Cost (H2A‐
Panel) 

H2 Cost ($/kg) 
Total

H2 Cost ($/kg) 
C/S/D

H2 Cost ($/kg) 
Production

H2A CasePanel Base CaseVendor RangeForecourt

Current (2005) H2A Case

Total Cumulative Change

Table 4 shows that the changes the Panel made that had the most significant impact on the 
hydrogen cost were production capital cost and energy use. These two variables plus the 
electricity price dominate the cost of hydrogen production from electrolysis. The rationale for the 
Panel’s choices of parameters for its base case is discussed below. 

• The basis for the production purchased capital cost and total energy use is discussed at 
length in Section 4.1.2 and Section 4.1.4, respectively. 

• The DOE directed the Panel to use the same electricity pricing in its base case as was 
used in the DOE H2A Case. Thus both use the EIA 2005 AEO High A forecast for 
electricity prices that use 2005 through 2025 as the analysis period. The 2005 price is 
$0.055/kWh. The price drops somewhat and then increases to $0.056/kWh by 2025. The 
average cost over the entire period is about $0.053/kWh. 

• Production Maintenance Costs: The participating electrolyzer vendors provided a range 
of production maintenance costs, all of which were significantly less than that used in the 
DOE H2A Case. A key advantage of electrolyzers is that they have no moving parts 
except for some in the balance-of-plant equipment. The primary issue with this 
technology is the lifetime of the cell stacks (discussed below). The vendors had actual 
data based on their current commercial electrolyzers. The Panel considered 2% of 
purchased capital to be a reasonable base-case value. 

• Electrolyzer Cell Replacement Cost and Frequency: The electrolyzer vendors provided a 
fairly narrow range for cell replacement frequency—7 to 10 years. The Panel chose to be 
conservative and use 7 years, because the technology incorporated in this analysis is new 
state of the art. Durability of electrolyzers using this technology still must be proven. The 
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Panel, using similar reasoning, also was somewhat conservative in its choice of the cost 
of this replacement as a percentage of the purchased capital. 

• Production operating capacity factor and the C/S/D low pressure storage quantity are 
discussed in Section 4.2.1. 

• Working capital is discussed in Section 4.1.5. 

• The C/S/D electrical upgrade is discussed in Section 4.2.2. 

• Process Water, Cooling Water, and Other Variable Costs: These variable costs have only 
a minor impact on total hydrogen cost. The range provided to the Panel by vendors for the 
process water requirement was fairly narrow and the Panel selected the middle of the 
range. Cooling water requirements can be considerable depending on the cooling approach 
used (discussed in Section 4.2.3). It is expected that forecourts would use some active 
cooling approach to minimize water use, but the capital and operating cost for this would 
be small. Rather than explicitly trying to estimate these costs, the Panel chose simply to 
include standard cooling water requirements as a surrogate. The DOE H2A Case had 
included some costs for replacing the alkaline solution for alkaline systems and other 
miscellaneous variable costs. From discussions both with vendors and internally, the Panel 
concluded any such costs would be negligible. 

5.3.2 Central Production Base Case 
The Panel believes that, since 2005, technology has advanced significantly in PEM and alkaline 
electrolysis applicable to central hydrogen production, as represented in the estimated cost 
reduction and as discussed in Section 4.1.1. The net change in hydrogen cost between the DOE 
published H2A Case for 2005 technology and the Panel’s base case for current (2009) state-of-
the art technology is a reduction of $1.51 (see Table 4). 

The DOE H2A Current Central Hydrogen Production from Grid Electrolysis version 2.1.1 was 
the starting point the Panel used for its analysis. All of the input parameters used in this case 
were reviewed and compared with all the information gathered as well as Panel members’ own 
knowledge and experience. The Panel modified the parameters as appropriate to represent its 
conclusions for state-of-the-art 2009 electrolysis technology to establish a base case. The 
changes the Panel made that had the most significant impact on the hydrogen cost were 
production capital cost, energy usage, and electricity price.  

Many of the H2A model input parameters were left unchanged as deemed appropriate. This 
included all of the standard “H2A Default Values” for financial inputs, fixed costs, and operating 
costs with the one exception of working capital (as discussed in Section 4.1.5). Also included 
were other inputs such as parameters concerning construction time and start-up, and some of the 
other variable costs. The inputs that were changed are shown in Table 4. This table also shows 
the range of values for these inputs received from the electrolyzer companies, the values from the 
DOE H2A Current Central Hydrogen Production from Grid Electrolysis version 2.1.1 (H2A 
Case) that represents 2005 technology, and the Panel’s base-case values. This table shows the 
stepwise and cumulative change in the hydrogen cost starting with the H2A Case.  

 

 21



Table 4. Panel Central Production Base Case 

Central Production Vendor Range Panel Base Case H2A case H2 Cost ($/kg) Delta

$4.50

Total Depreciable Capital Cost (M$) $17.9 to $56.3 $50 $110.4M $3.74
Energy use  (kWh/kg) 48 to 59 50 53.44 $3.55
Electricity Price NA 0.045 $/kWh $.055/kWh EIA  $3.13
Electrolyzer Cells Capital Replacement (M$)                            
(% of Total Depreciable Capital)

$1.2 to $19.7    
6% to 35%

$12.5           
25%

$28.3            
26%

$3.13 $0.00

Eletrolyzer Cell Replacement Interval (yrs) 7 to 10 7 10 $3.17 $0.04
Working Capital (% of Change in Operating Costs) NA 5% 15% $3.12
FTE's 5 to 10 10 3 $3.18 $0.06
Production Maintenance (% of Total  Depr. Capital) 1% to 3% 2% 2.6% $3.16
Process Water (gal/kg‐H2) 2.6 to 2.9 2.5 2.9 $3.16 $0.00
Cooling Water (gal/kg‐H2) 0.1 to 290 290 294 $3.16 $0.00
All other Variable Costs (k$/yr) NG $0 $433 $3.13
Op. Capacity Factor (%) 98‐99.5 98% 97% $3.13 $0.00
Start‐up time (months) 6 6 24.00 $2.99
Land Cost  ($/acre) NA $50,000 $5,000 $3.00 $0.01

Current (2005) H2A Case

Total Cumulative Change

($0.76)
($0.19)
($0.42)

($0.05)

($0.02)

($0.03)

($0.14)

($1.51)

 
As Table 4 shows, and as noted above, the changes the Panel made that had the most significant 
impact on the hydrogen cost were production capital cost, energy use, and electricity price. 
These variables dominate the cost of hydrogen production from electrolysis. The rationale for the 
Panel’s choices of parameters for its base case is discussed below. 

• The Panel’s basis for the total depreciable capital and total energy use is discussed at 
length in Section 4.1.2 and Section 4.1.4, respectively. 

• Electricity Price: The DOE charter to the Panel was to estimate the current state-of-the art 
cost of hydrogen from a central electrolysis facility that had access to renewable elec-
tricity at all times. The DOE provided a cost of electricity of $0.045/kWh held constant 
over the analysis period to represent this scenario. This value was based on the following. 

o The DOE estimate for the gate cost of electricity from a wind farm is 
$0.0405/kWh. 

o The EIA AEO 2009 projection for the cost of electricity transmission is $0.007 to 
$0.009/kWh for 2006–2009. Other projections range from $0.006/kWh to 
$0.009/kWh. DOE chose to use a value of $0.007/kWh. 

o It is assumed that the electrolysis plant is located at a wind farm. The wind farm 
has an operating capacity of 40% and supplies $0.0405/kWh electricity to the 
electrolysis plant when operating. The electrolysis plant receives the remainder of 
its electricity (60%) from other wind plants at a price of $0.0475. 

• Electrolyzer Cell Replacement Cost and Frequency: The electrolyzer vendors provided a 
fairly narrow range for cell replacement frequency—7 to 10 years. The Panel chose to be 
conservative and use 7 years because the technology being incorporated in this analysis is 
new state of the art. Durability of electrolyzers using this technology still must be proven. 
Using similar reasoning, the Panel also was somewhat conservative in its choice of the 
cost of this replacement as a percentage of the purchased capital versus the range 
provided by the vendors. The actual percentage used is less than that used in the forecourt 
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case because the forecourt case is based on purchased capital and the central case is based 
on total depreciable capital of the entire central plant. 

• Working capital is discussed in Section 4.1.5. 

• Labor: Full-time equivalents (FTEs) is the number of people needed to operate the full 
plant. A facility operating 24 hours per day, 7 days a week requires five full shifts of 
staffing. Thus 10 FTEs only represents 2 people at the plant at all times. The Panel thinks 
this is the appropriate staffing level. This category does have a measurable impact on 
hydrogen costs. 

• Production Maintenance Costs: The electrolyzer vendors provided a narrow range for 
production maintenance costs. A key advantage of electrolyzers is that they have no 
moving parts except in the balance-of-plant equipment. The primary issue with this 
technology is the lifetime of the cell stacks (discussed above). The vendors had actual 
data based on their current commercial electrolyzers. The Panel determined that 2% of 
total depreciable capital was a reasonable base-case value. 

• Process Water, Cooling Water, and Other Variable Costs: These costs were found to have 
only a minor impact on costs. The range vendors provided to the Panel for the process 
water requirement was fairly narrow, and the Panel selected the middle of the range. 
Cooling water needs can be considerable depending on the cooling approach taken 
(discussed in Section 4.3.5). Central plants are expected to use evaporative cooling water 
towers. Rather than explicitly try to estimate these costs, the Panel simply chose to 
include once-through cooling water requirements as a surrogate. The DOE H2A Case had 
included some costs for replacing the alkaline solution for alkaline systems and other 
miscellaneous variable costs. From discussions both with vendors and internally, the 
Panel concluded any such costs would be negligible. 

• Operating capacity is discussed in Section 4.3.1. 

• Start-up time for an electrolyzer facility is considered by the vendors to be 
straightforward and the Panel agrees. This is another advantage of this technology for 
hydrogen production. The reduction from 24 months for the DOE H2A Case to 6 months 
reduces the hydrogen cost by a significant amount ($0.14/kg). 

• Land costs are discussed in Section 4.3.2. 

5.4 Sensitivity Analysis 
5.4.1 Distributed Forecourt Production Sensitivity Analysis 
Table 5 shows what the Panel has chosen as its best estimate for the tenth-percentile and 
ninetieth-percentile likely values (10% / 90%  values) for the parameters of importance discussed 
above in the forecourt production base case (Section 5.3.1). The 10% level is an estimate of the 
value of a parameter such that there only is a 10% chance that the value is less. Similarly, the 
90% level is the value of a parameter such that there only is a 10% chance the value is greater. 
These are useful and statistically meaningful points to use in a sensitivity analysis. Table 5 also 
shows the H2A model results for the cost of hydrogen at these 10% / 90% parameter levels for 
the current (2009) state-of-the-art forecourt production unit, C/S/D, and for the total forecourt 
station. These results represent changing only the one parameter in that table row from the Panel 
base case (i.e., one variable at a time). Figure 6 plots these values as a tornado chart. 
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Table 5. Forecourt Electrolysis Panel Base Case Sensitivity Analysis 

 

Figure 6. Forecourt electrolysis Panel base case sensitivity analysis tornado chart 

Table 5 and Figure 6 use 10% / 90% values for all the variables, therefore the length of the bars 
in the tornado chart represent the relative sensitivity of the hydrogen cost to that variable. Figure 
6 clearly shows that electricity price is the most important variable, followed by electricity use, 
and then by production purchased capital cost. The other variables only make a minor change to 
the hydrogen cost even at these 10% / 90% limits. This can be seen another way by examining 
Figure 7. This pie chart shows the breakdown of the costs of the production portion of the 
forecourt ($3.32/kg of hydrogen). This shows that 79% of the cost is from the cost of the 
electricity needed, 17% is from the capital cost, and all the other costs together account for only 
4% of the hydrogen production cost. A reasonable summary of this sensitivity analysis is that, 
excluding electricity price variations, a reasonable range for the delivered cost of hydrogen from 
forecourt electrolysis is between $4.90 and $5.70. 

Production Purchased Capital Cost (M$) $0.55 $1.80 $3.05 to $3.58 $1.87 $4.92 to $5.45
Total Energy  (kWh/kg) 47.5 60 $3.19 to $3.85 $1.87 $5.06 to $5.72
Electricity Price ($/kWh) $0.03 $0.08 $2.20 to $4.70 $1.87 $4.07 to $6.57
Production Maintenance (% of Purchased Capital) 1% 3% $3.30 to $3.35 $1.87 $5.17 to $5.22
Electrolyzer Cells Capital Replacement                                      
(% of Total Production Purchased Capital)

10% 50% $3.25 to $3.36 $1.87 $5.12 to $5.23

Eletrolyzer Cell Replacement Interval (yr) 5 10 $3.37 to $3.27 $1.87 $5.24 to $5.14
Working Capital (% of Change in Operating Costs) 0.50% 10% $3.31 to $3.36 $1.87 $5.18 to $5.23
Process Water (gal/kg‐H2) 2.4 3 $3.32 to $ 3.32 $1.87 $5.19
Cooling Water (gal/kg‐H2) 150 330 $3.30 to $3.32 $1.87 $5.17 to $5.19

Forecourt Panel 10% Panel 90%
Panel Result Range 
Production ($/kg)

Panel Result Range 
C/S/D ($/kg)

Panel Result Range 
Total ($/kg)

$2.00 $3.00 $4.00 $5.00

Hydrogen Cost ($/kg)

$6.00 $7.00

Cooling Water (gal/kg-H2) [range 150 - 330]

Working Capital (% of Change in Operating Costs) [range  0.5%
- 10%]

Production Maintenance & Repairs (% of Purchased Capital)   [
range 1% - 3%]

Eletrolyzer Cell Replacement Interval (yrs) [range 10 - 5]

Electrolyzer Cells Replacement (% of Total Purchased Capital) 
[range 10% - 50%]

Production Purchased Capital Cost (M$) [range $0.55 - $1.8]

Energy use  (kWh/kg)  [range 47.5 - 60 ]

Electricity Price ($/kWh)  [range $.03 - $.08]

$2.00 $3.00 $4.00 $5.00

Hydrogen Cost ($/kg)

$6.00 $7.00

Cooling Water (gal/kg-H2) [range 150 - 330]

Working Capital (% of Change in Operating Costs) [range  0.5%
- 10%]

Production Maintenance & Repairs (% of Purchased Capital)   [
range 1% - 3%]

Eletrolyzer Cell Replacement Interval (yrs) [range 10 - 5]

Electrolyzer Cells Replacement (% of Total Purchased Capital) 
[range 10% - 50%]

Production Purchased Capital Cost (M$) [range $0.55 - $1.8]

Energy use  (kWh/kg)  [range 47.5 - 60 ]

Electricity Price ($/kWh)  [range $.03 - $.08]
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Figure 7. Forecourt production (excluding forecourt C/S/D)—hydrogen cost breakdown 

5.4.2 Central Production Sensitivity Analysis 
Table 6 shows what the Panel has chosen as its best estimate of the 10% / 90% values for the 
parameters of importance discussed above in the central production base case (Section 5.3.2). 
Table 6 also shows the H2A model results for the cost of hydrogen at these 10% / 90% parameter 
levels for the current (2009) state-of-the-art central production. These results represent changing 
only the one parameter in that table row from the Panel base case. Figure 8 plots these values as 
tornado chart. 

Table 6. Central Electrolysis Panel Base Case Sensitivity Analysis 

Central Production Panel

preciable Capital Cost (M$) $23
use  (kWh/kg) 47

 Price ($/kWh) $0.
yzer Cells Capital Replacement                                       10%
er Cell Replacement Interval (yrs) 5
 Capital (% of Change in Operating Costs) 3%

 10% Panel 90% Result Range

Total De $74 $2.72 to $3.24
Energy  .5 60 $2.88 to $3.46
Electricity 03 $0.08 $2.23 to $4.78
Electrol 50% $2.94 to $3.09
Eletrolyz 10 $3.05 to $2.96
Working 12% $3.00 to $3.03
FTE's 10 25 $3.00 to $3.10
Production Maintenance (% of Total  Depr. Capital) 1% 5% $2.97 to $3.08
Process Water (gal/kg‐H2) 2.4 3 $3.00 to $3.00
Cooling Water (gal/kg‐H2) 150 330 $3.00 to $3.00
Op. Capacity Factor (%) 96% 99.50% $3.01 to $2.99
Start‐up time (months) 4 12 $2.98 to $3.04
Land Cost  ($/acre) $5,000 $200,000 $3.00 to $3.00
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Figure 8. Central electrolysis Panel base case sensitivity analysis tornado chart 

As seen for the forecourt case, Figure 8 clearly shows that electricity price is the most important 
variable, followed by electricity use and then production purchased capital cost for central 
electrolysis. For the central case, electrolyzer cell replacement costs and intervals and plant 
staffing also can have a measurable impact on the hydrogen cost. The other variables make only 
a very minor change to the hydrogen cost, even at the 10%/ 90% limits. This can be seen another 
way in Figure 9. This pie chart shows the breakdown of the costs of central electrolysis hydrogen 
production. This shows that 79% of the cost is from the cost of the electricity needed, 16% is 
from the capital cost, 5% is from fixed O&M costs including staffing, and all the other costs 
together account for only 1% of the hydrogen production cost. A reasonable summary of this 
sensitivity analysis is that—excluding electricity price variations—a reasonable range for the 
plant gate cost of hydrogen from central electrolysis is between $2.70 and $3.50. 

 

Figure 9. Central production hydrogen cost breakdown 

 

Capital Cost 
17%

Fixed O&M
6%

Other Variable 
Costs

1%

Electricity Cost
76%

2.00 2.50 3.00 3.50 4.00 4.50 5.00

Hydrogen Cost ($/kg)

Cooling Water (gal/kg-H2) [range 150 - 330]
Operating Capacity Factor (%) [range 99.5 to 96]

Working Capital (% of Change in Operating Costs) [range 3% -12%]
Start-up time (months) [range 4 to 12]

Eletrolyzer Cell Replace. Interval (yrs) [range 10 - 5]
Full Time Equivalent Staff (FTE's) [range 10 to 25]

Prod., Maint. & Repairs (% of Total Depreciable Capital) [range 1% - 5%]
Electrolyzer Cells Replace. (% of Total Depreciable Capital)  [range 10% - 50%]

Production Total Depreciable Capital Cost (M$) [range $23 - $74]
Energy use  (kWh/kg)  [range 47.5 - 60 ]

Electricity Price ($/kWh)  [range $.03 - $.08]

Cooling Water (gal/kg-H2) [range 150 - 330]
Operating Capacity Factor (%) [range 99.5 to 96]

Working Capital (% of Change in Operating Costs) [range 3% -12%]
Start-up time (months) [range 4 to 12]

Eletrolyzer Cell Replace. Interval (yrs) [range 10 - 5]
Full Time Equivalent Staff (FTE's) [range 10 to 25]

Prod., Maint. & Repairs (% of Total Depreciable Capital) [range 1% - 5%]
Electrolyzer Cells Replace. (% of Total Depreciable Capital)  [range 10% - 50%]

Production Total Depreciable Capital Cost (M$) [range $23 - $74]
Energy use  (kWh/kg)  [range 47.5 - 60 ]

Electricity Price ($/kWh)  [range $.03 - $.08]

2.00 2.50 3.00 3.50 4.00 4.50 5.00

Hydrogen Cost ($/kg)
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6 Results and the Impact of Electricity Prices 

The Panel’s base-case cost for hydrogen from forecourt distributed electrolysis at an electricity 
price of $0.053/kWh is $5.19 per kilogram of hydrogen. This compares with the DOE published 
H2A Case of this scenario representing 2005 technology of $6.05/kg at the same electricity price. 
This represents significant progress occurring in electrolysis technology since 2005, as discussed 
in Section 4.1.1. The greatest cost reduction has come from lower capital cost, followed by 
improved energy efficiency (see Table 3); taken together these account for 93% of the cost 
reduction. Remarkable progress has been made in hydrogen electrolysis production. 

As discussed in Section 1, these numbers cannot be compared directly with the overall DOE 
Hydrogen Program forecourt electrolysis delivered hydrogen cost targets because these targets 
were derived with an older H2A model. The DOE Hydrogen Program, however, does have 
specific 2014 targets for distributed production capital costs and efficiency. The Panel’s results 
equate to a production capital cost of $380/kW, which is slightly less than the DOE 2014 target 
of $400/kW for distributed production. The Panel’s production efficiency (LHV) of 67% is only 
slightly less than the DOE 2014 target of 69%. The DOE’s 2006 status for distributed production 
is $665/kW for capital and 62% efficiency. 

The Panel’s base-case cost for hydrogen from central electrolysis at an electricity price of 
$0.045/kWh is $3.00/kg of hydrogen. This compares with the DOE published H2A Case of this 
scenario representing 2005 technology of $4.50/kg at an average electricity price of $0.053/kWh. 
The difference in electricity price accounts for $0.42/kg of the cost reduction. Of the remainder, 
capital cost reduction contributes the largest portion, followed by energy efficiency and reduced 
start-up time (see Table 4). 

As discussed in Section 1, these numbers cannot be compared directly with the overall DOE 
Hydrogen Program central electrolysis hydrogen cost targets because these targets were based on 
a dedicated wind plant electrolysis scenario. The DOE Hydrogen Program, however, does have 
specific 2014 targets for central production capital costs and efficiency. The Panel’s results 
equate to a production capital cost of $460/kW compared to the DOE 2014 target for central 
production of $350/kW. The Panel’s production efficiency (LHV) of 67% is only slightly less 
than the DOE 2014 target of 69%. The DOE’s 2006 status for central production is $665/kW for 
capital and 62% efficiency. 

These conclusions represent remarkable progress made in hydrogen electrolysis production since 
2005. They are supported by the technology improvements discussed in Section 4.1.1. Clearly, 
there is uncertainty in the base-case values, and the technology evaluated has not been proven 
commercially. In some cases the data is only at the lab scale. In most cases, the full integration of 
all aspects of the newest technology has not occurred even at the lab scale. The Panel tried to be 
conservative in its base cases for all of these reasons. The difficulty in projecting from available 
capital cost information to high-volume manufacturing in a mature market also is discussed in 
Section 4.1.2. The Panel’s selection of 10% / 90% levels for all the key parameters is a way to 
try to quantify the level of uncertainty in the base-case values as shown in the tornado charts in 
Figure 7 and Figure 8. 
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By far, the uncertainty that has the greatest impact is electricity price. Electricity prices can—and 
will—be affected by many variables including regional resources; supply and demand, especially 
at peak times; and the potential impact of carbon policy. Figure 10 shows the Panel’s base cases 
as a function of electricity price. This clearly shows the impact of electricity price on the cost of 
hydrogen from electrolysis. Production capital cost and energy efficiency also can have a 
significant uncertainty impact. Electrolysis technology tends to trade off these factors. More 
capital can be spent to improve efficiency and, conversely, capital cost can be reduced at the 
expense of some efficiency. 
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Figure 10. Base cases as a function of electricity price 

There is some uncertainty about other parameters for both forecourt and central electrolysis 
production, but they have less impact. The Panel has made no distinction between PEM and 
alkaline electrolysis technologies. Although the two technologies are inherently different, the 
values observed for capital costs and efficiencies overlap. 

7 Opportunities for Future Cost Reductions 

As discussed above, things are well underway toward meeting DOE targets, provided that the 
technologies currently under development are commercialized successfully. To ensure that this 
happens, the Panel suggests the following as focal points for development efforts. 

• Emphasize full-scale demonstration of new technologies currently being developed. 

• Reduce the cost of balance-of-plant items, particularly for power electronics (rectifiers, 
transformers). 

• Develop mass manufacturing methods, including new methods and materials. Evaluate 
methods used by the fuel cell industry and in other high-volume manufacturing 
operations. 
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• Analyze possible limiting input factors (e.g., certain catalyst components) in the case of 
large-scale application of technology. 

• Design units that have greater capacities, particularly the cell stack. Use the experience in 
other electrolysis technologies to optimize designs for large capacities (e.g., PEM units 
based on chlor-alkali design concepts). 

• Develop engineering design of large-scale central hydrogen production, including a 
verified cost estimate of a complete plant. 

• Decrease the cost of renewable power. Study the integration of electrolyzers in the 
development of new renewables and electricity grid plans. As discussed, 80% of the cost 
of hydrogen is from the cost of electricity. For hydrogen using electrolysis to be both 
sustainable and cost effective, the development of renewable power and hydrogen should 
be seen in context. 

• Evaluate DC (direct current) and control integration of renewable power plants (e.g., 
wind, electrolyzers) to reduce conversion costs. 
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Appendix A. Vendor Questionnaire and Fact Sheet 

 
Introduction 

 
We are doing an independent assessment for the Department of Energy (DOE) Hydrogen Program on 
the current state of the art hydrogen production through electrolysis of water. We are interested in two 
scales of production; 1,500 kg/day (62.5 kg/hr) design capacity for refueling stations and 50,000 kg/day 
(2,083 kg/hr) design capacity for central production.  We are interested in both PEM and alkaline 
electrolysis technology, and recognize that several electrolyzer units may be needed to give the required 
capacities. 
 
By “state of the art current technology” we mean your best technology that you have demonstrated at 
least in the laboratory and that you believe you could scale up to commercial electrolysis unit that 
would have a practical commercial lifetime. Please notice that cost estimates should be provided 
assuming a mature market (i.e. a demand for 500 stations per year for the forecourt case, for central 
production a situation where several such plants have been built and this is the nth plant).  
 
We would greatly appreciate if you could answer the questions on the following Water Electrolysis Fact 
Sheet. The attached Guidelines provide information to help you. All information provided will be used by 
the independent assessment team only, e.g. to provide input into the “H2A” model developed by DOE 
(see http://www.hydrogen.energy.gov/h2a_analysis.html ). Our report will not associate any specific 
information with any particular company. If you have any questions, please contact us. If you cannot 
provide helpful information due to its proprietary nature, we are willing to try to work out a non‐
disclosure agreement with you.  
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Water Electrolysis Fact Sheet 

 
Manufacturer: 
Case no.: 
 
Type of installation (check one):   Forecourt (1,500 kg/day)          Central (50,000 kg/day)    
 
Technology (check one):    PEM          Alkaline          
Please attach a concise description of the key features of your technology, including what makes it 
different/more advanced than other electrolysis technologies. 
 
Briefly describe the relative maturity of this technology; at what scale have you successfully 
demonstrated the key features of your advanced technology (lab, pilot, and electrolyzer cell size [cm2] 
electrolyzer size [kW]) etc.: 
 
 
 
Expected life time of cell stack: 
Expected life time of Balance‐of‐Plant (BOP): 
 
Configuration (for either Forecourt 1,500 kg/day or Central 50,000 kg/day): 
Capacity of each electrolyzer (kg H2/day and kW): 
Number of cell stacks per electrolyzer: 
Cell size (cm2): 
Number of electrolyzers in total installation: 
 
Electrolyzer operating pressure (psi):  Hydrogen:      Oxygen: 
Electrolyzer operating temperature (0C): 
Current density (mA/cm2):           
 
Footprint of total installation, including BOP (ft):    
 
Capital Costs (at developed market) 
Read guidelines regarding market size, definitions, scope, etc.   
All costs in current (2009) USD 
 
Electrolyzer units (cell stacks)            USD      
Compression to 300 psi (where applicable)        USD 
Balance of Plant (preferably itemized in attachment)      USD 
Total capital cost:              USD 
 
Briefly describe the approach you took to projecting costs to the scale of hydrogen production 
requested and to high volume manufacture. 
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Power consumption 
Energy consumption, cell stack                kWh/kg H2 out 
Energy consumption, entire plant (including BOP)          kWh/kg H2 out 
 
Please comment on any expected increase of energy consumption over the expected life time due to 
cell stack degradation: 
 
 
 
Operation and maintenance 
Estimated annual maintenance cost        USD/yr or  % of initial capital/yr 
 
Estimated cost of cell stack reactivation/replacement     USD or    % of initial capital 
              replacement interval once every ___ year 
 
Other Costs   
Process Water (gal/kg H2 out):         
Cooling Water (gal/kg H2 out): 
Compressed Inert Gas (Nm3/kg H2 out): 
Electrolyte Solution (USD/yr or USD/kg H2 out) [alkaline case] 
Other significant consumables (USD/yr): 
 
For Central Production Case Only 
Construction Time (yrs): 
Start‐up Time (months): 
Estimated number full‐time O&M staff needed: 
Estimated max. operating capacity/”up‐time” (%) 
 
 
Current Commercial Product 
What is the largest electrolyzer of similar but less advanced technology than the state of the art 
technology described in this case that you currently have available for sale (kW and kg of hydrogen/hr):  
 
 
For current commercial product: 
What is the cost of the full unit including the BOP:     USD       USD/kW 
What is the cost of the cell stack alone:        USD/kW 
Energy consumption, cell stack:          kWh/kg H2 out 
Energy consumption, entire plant (including BOP):    kWh/kg H2 out 
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Guidelines to Electrolysis Fact Sheet 
 
Please express your answers in 2009 USD. 
 
Case no.: Identifier for each of your provided cases, using e.g. your product model or any other 
designation as a basis.  We would like at least two cases submitted (one forecourt case and one for 
centralized production, see below).   
 
Type: We are interested in two scales of hydrogen production, as specified by DOE: 1500 kg/day (62.5 
kg/h) design capacity for forecourt refueling stations, and 50,000 kg/day (2,083 kg/hr) design capacity 
for central hydrogen production. Each needs to include hydrogen compression to at least 300 psi. Cases 
that provide hydrogen at a pressure >300 psi up to 1000 psi without post electrolyzer compression will 
be given credit for the higher outlet pressure. Please complete at least one form for each case, if you 
consider your technology to be suitable.  
 
Technology: Please check the appropriate box for either PEM or alkaline technology.  The attached 
description of your technology could be common to several or all your cases, please limit your 
description to one page or less.  
 
Maturity: We are looking at “state of the art current technology”, which means the best technology that 
you have demonstrated at least in the laboratory and that you believe could scale up to a commercial 
electrolysis unit at the specified capacities. For each case, please provide a description of whether this 
particular cell size, configuration, current density, etc. has been demonstrated in the lab, in pilot units, 
or commercial units.  
 
Expected life time: We need an estimate of the time interval between each change of cell stack or other 
major overhauls or replacements. Please specify which unit(s) is/are considered critical. 
 
Configuration: We expect the indicated capacities may be served by a configuration of several 
electrolyzer units, each consisting of one or several cell stacks. Please indicate the capacity of each 
electrolyzer unit, as well as the number of such units, the number of cell stacks in each unit, and the size 
of the cells. 
 
Operating pressure: Should be given in psi for both the hydrogen and the oxygen side of the electrolysis 
cell, operating temperature for the cell in 0C.. Current density at design capacity should be indicated in 
mA/cm2.  
 
Footprint:  Should include all auxiliaries, including power electronics, control units, compression to 300 
psi, etc.  
 
Capital costs:  
The cost breakdown may be based on your normal procedures, but should as a minimum specify the 
cost of the core cell stack units and the balance of plant. A more detailed breakdown will be 
appreciated, please provide extra attachments as needed.  
 
Assume a developed market: For forecourt refueling stations assume a demand for 500 of these stations 
per year. For central production assume that several such plants have been built and this is the nth plant.  
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For the Forecourt case, we would like to see the total purchase cost of pre‐assembled skids or 
containers delivered to site. An installation factor of 1.1 will be assumed; please comment if you find 
this inappropriate for your technology. The forecourt case does not include large storage, compression 
to pressures needed for refueling vehicles (6,250 psi), and dispensing.  
 
For the Central case, we are looking for the total cost of the project, i.e. for a complete hydrogen plant 
delivering hydrogen at 300 psi (or higher).  Downstream delivery is not included. Please make sure that 
the cost breakdown gives a clear picture of the way total costs have been estimated, particularly with 
respect to installation costs, engineering, commissioning, contingencies, etc.    
 
The scope includes: 
  Electrolyzer units (cell stacks) 
  Transformer and rectifier, other power electronics 
  Control system 
  Water treatment (if needed) 
  Hydrogen deoxo and drier unit 
  All interconnecting piping and cabling 
  Compression to 300 psi (if operating pressure is lower) 

Other auxiliaries needed 
Buildings/enclosures 

   
but excludes: 
  Compression above 300 psi (credit will be given for electrolyzer op. pressure > 300 psi) 

Hydrogen storage (except for what may be needed to keep the electrolyzer operation running 
smoothly)  
Dispensers (Forecourt case) 
Grid connection for electrical power 
Downstream delivery, pipelines etc. (Central case) 
Cost of land 

 
Power consumption: Please relate all energy consumption figures to the net amount of hydrogen being 
produced. Figures for the “entire plant” relate to the same scope as indicated for the capital costs (e.g. 
without compression above 300 psi unless this higher pressure is inherent to the electrolyzer itself). For 
some technologies there is a significant shift in power consumption over the life of the cell stack; please 
give a verbal description of such change.  
 
Operation and maintenance: The estimated annual maintenance cost relates to an average year. Cost of 
replacement of the cell stacks or cells on a periodic basis is specified on the following lines, including an 
expected frequency of such changes. Both numbers may be given in USD or as a percentage of the initial 
capital cost of the entire plant. For the central production plant, we also would like an estimate of the 
number of full time staff needed for normal operation of the plant. 
 
Operating capacity: Provide an estimate of the availability of hydrogen production, as % of theoretical 
capacity, taking into account only the operations of the total electrolyzer plant itself. Variability of the 
power supply or a variable demand shall not be considered.  
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Current commercial product: 
This section should describe your currently available commercial technology. The capacity, cost and 
energy consumption relate to one complete unit (with one or several cell stacks). If you fill in forms for 
both the Forecourt and Central case, the data for the current commercial product only needs to be 
specified once. 
 
General:  Any additional information you consider relevant will be appreciated. Examples are technology 
details, specific advantages of your technology, areas of current development, scale‐up challenges, cost 
uncertainties, potential for future cost savings, manufacturing issues etc.  
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Appendix B. Capacity Factor and Storage 

Distributed Hydrogen Production at Refueling Stations: Impact of Supply and 
Demand Variations on Capacity Factor Calculations and Storage Requirements 
 
Amgad Elgowainy and Brian James 
Argonne National Laboratory 
 
Distributed hydrogen production is most commonly achieved through natural gas reforming or 
water electrolysis at the refueling station site. The production unit is capable of producing 
hydrogen at specific daily rate (capacity). Because hydrogen production units at refueling 
stations would require maintenance, both scheduled and unscheduled, its capacity would not be 
fully utilized throughout the year. Furthermore, seasonal variation of the demand of hydrogen 
vehicles would result in lower utilization of production capacity during low seasonal demand 
which occurs typically in the winter. This results in an annual capacity factor of less than 100%. 

In addition to the seasonal demand variation, hydrogen demand varies from day to day 
throughout a typical week, and hour by hour throughout a typical day. To eliminate the impact of 
such short-term demand variations on production capacity utilization and operational efficiency, 
buffer storage tanks could be employed to absorb excess production output during times of low 
demand and to supplement the production output during times of peak demand. Such buffer 
storage could also be sized to hold enough charge to keep the station operational during 
unscheduled outages if the duration of such outages is expected to be relatively short (e.g., less 
than 24 hours). 

In the rest of this document, a methodology to calculate the annual capacity factor of the pro-
duction unit and the storage requirement is explained in details. The impact of the parameters 
that define the supply and demand variations are quantitatively assessed through a set of simple 
equations and example H2A assumptions. The capacity factor (CF) calculation methodology is 
first introduced, followed by a methodology to calculate the storage capacity at the refueling 
station. 

Capacity Factor Calculation 
Figure 11 depicts the production unit capacity, the satisfied demand (yellow area), and the 
unutilized capacity (gray area) over an entire year. Hydrogen demand is assumed to be greater in 
the summer and lower in the winter as compared to the rest of the year (fall and spring). The 
production unit scheduled maintenance is assumed to occur during the low demand season 
(winter). An unplanned outage of the production unit is assumed to occur at a typical frequency. 
Therefore the production unit needs to produce an excess amount of hydrogen and compress it to 
buffer storage on a daily basis during the operational time between unscheduled outages; then 
recuperate that amount to satisfy the station demand during the downtime of the production unit. 
The buffer storage requirement is implied by the gray-colored area that is constrained between 
the production daily capacity line and the summer daily demand line at the top of Figure 11. 
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Figure 11. Seasonal demand variation and scheduled outage 

The annual capacity factor for the production unit can be simply calculated by dividing the 
yellow area by the total area of Figure 11. This can be represented mathematically by the 
following equation. 

Capacity factor (CF) = 
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Where: 

• DDFS is the typical (average) daily demand (i.e., in the fall and spring), 

• DPC is the daily production capacity, 

• Dfall is the typical number of days for the fall season’s demand, 

• Dspring is the typical number of days for the spring season’s demand, 

• Dsummer is the typical number of days for the summer season’s demand, 

• Dwinter is the typical number of days for the winter season’s demand, 

• Psummer is the percentage increase in demand in the summer relative to the 
average daily demand (DDFS), and 

• Pwinter is the percentage decrease in demand in the winter relative to the  
average daily demand (DDFS). 
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Note that the typical daily demand (DDFS) can be related to the daily production capacity (DPC) 
by the following formula. 

DDFS = )(1
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Where: 

• Hdown is the number of hours during unscheduled downtime, and 

• Dop is the minimum number of days between unscheduled plant outages. 

Also note that Dfall + Dspring can be calculated from the following. 

Dfall + Dspring = 365 – Dsummer – Dwinter - Doutage 

Where Doutage is the number of days for scheduled production unit maintenance. 

The numerator of the DDFS formula represents the typical summer daily demand. In particular, the 
second term in the numerator represents the percentage of DPC that is accumulated daily during 
the unit’s operation between downtimes (Dop) to satisfy the station demand during the downtime 
of the production unit (Hdown). The above formula only quantifies the lost capacity due to the un-
planned outages (Hdown each); it does not calculate the storage requirement for each outage (which 
is the subject of the next section). Thus, the CF equation can be reduced to the following formula. 

Capacity factor (CF) = 
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It should be noted that the minimum time between unscheduled plant outages (Dop) significantly 
impacts the capacity factor of the production unit. 

The following default assumptions are made in the H2A model for distributed hydrogen 
production. 

• Dsummer 120 days, 

• Psummer = 10%, 

• Dwinter = 120 days, and 

• Pwinter = 10%. 
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The following assumptions are recommended for distributed electrolysis hydrogen production by 
the Electrolysis Hydrogen Production Independent Assessment Panel. 

• Hdown = 14 hrs, 

• Dop = 30 days, and 

• Doutage = 5 days. 

Based on the above CF equation and according to these H2A default assumptions, 88% of the 
production unit annual capacity could be utilized to satisfy the assumed hydrogen seasonal 
demand. 

Storage Requirement Calculation 
To achieve high utilization (CF) of the production unit, onsite storage is needed to satisfy three 
main variations in demand and supply: daily variation of demand, hourly variation of demand, 
and unplanned interruption of supply. 

Daily Variation of Demand 
Figure 12 shows the typical daily demand variation over a week as obtained from Chevron. The 
demand on Thursday and Friday exceeds the average daily demand by 5% and 8%, respectively. 
This 13% of above-average demand corresponds to below-average demand on Monday, 
Tuesday, and Saturday. Thus, the production amount in excess of Monday, Tuesday, and 
Saturday demand is compressed into storage and is recovered from storage during above-average 
demand on Thursday and Friday. To be conservative, the stored amount is calculated to handle 
13% of a “summer” daily demand. 

 
Figure 12. Daily demand variation 
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Hourly Variation of Demand 
Figure 13 shows the typical hourly demand variation over a day (e.g., Friday) as provided by 
Chevron. The average hourly demand over 24 hours is 4.17% (i.e., 1/24) as shown in the figure. 
However, the actual demand peaks above the average from 8:00 a.m. through 9:00 p.m. The 
corresponding below-average demand occurs between 9:00 p.m. and 8:00 a.m. Thus, onsite 
storage is required to store hydrogen from the production unit during off-peak demand hours and 
to supplement the production unit during peak demand hours. The stored amount can be easily 
calculated by integrating the area between the demand profile and the average demand line in 
Figure 13. In general, the storage requirement to handle the increase in hourly demand during 
peak demand hours of the day can be calculated as follows. 

DDpeak =  
[ ]∑

=

=

−
24

1
avehr,hr 0),DDDD( max

hr

hr

Where: 

• DDhr is the hourly demand for each hour of the day, and 

• DDhr,ave is the average hourly demand over 24 hours. 

It should be noted that actual storage capacity would be greater than the amount calculated by the 
above formula due to the impact of the heel pressure on the usable capacity of the storage tank. 
For the demand profile of Figure 13, this area is approximately one-third of the total daily 
demand. To be conservative, the stored amount is calculated to handle one-third of a “summer” 
daily demand. 

 

Figure 13. Hourly demand variation 
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Unplanned Interruption of Supply (Unscheduled Plant Outages) 
H2A assumes unscheduled plant outages of Hdown continuous hours occurring between a 
minimum duration of Dop. To maintain the refueling operation at the station, enough storage 
should be available to handle such interruption of supply. When the unscheduled outage occurs, 
the buffer storage should be able to handle the worst case scenario (i.e., when outage occurs 
during the peak hours of demand for a summer day). Figure 14, shows an example for the default 
assumption (Hdown = 14 hrs) used in the CF calculation above. The worst case scenario occurs 
when production is out of operation during the peak 14 hours of demand (8:00 a.m. to 
10:00 p.m.). Based on the Chevron demand profile shown in Figure 14, the critical 14 hours of 
supply interruption requires that the storage provides 6/7 (or 86%) of the total daily demand. 
Figure 12, Figure 13, and Figure 14 provide sufficient information to estimate the required onsite 
storage. The usable storage can be calculated according to the following formula. 

[ ] FSsummerdowndayweek DDPPPP )1.(),max( ++Usable Storage =  

Where: 

• Pweek is the maximum increase in demand above the average daily demand as a 
percentage of the average daily demand over a one-week period; 

• Pday is the maximum increase in demand above the average hourly demand as a 
percentage of the total daily demand over a 24-hour period; and 

• Pdown is the maximum deficiency in daily supply as a percentage of the total daily demand 
due to  an unscheduled production outage for a period of Hdown hours. 

 

Figure 14. Critical 14 hours of supply interruption 
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Using the H2A default demand profiles, the usable storage required to satisfy the daily and 
hourly peak in demand, as well as the unscheduled production outages can be calculated as 
follows. 

Usable Storage (H2A default)  = [13% + max(1/3, 6/7)] x summer daily demand  
   = 99% of summer daily demand 
   ≈ 1 summer daily demand (i.e. ≈ daily production capacity) 
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Knut Harg is a private consultant based in Skien, Norway. He previously held the position as 
president of Hydrogen Technologies AS (previously Norsk Hydro Electrolysers AS), one of the 
leading global suppliers of electrolyzers for hydrogen production. Knut is a chemical engineer, 
and holds degrees from the Norwegian Institute of Technology and from the University of 
Wisconsin at Madison. He was employed by the energy and materials group Norsk Hydro ASA 
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manager in the DOE Office of Energy Efficiency and Renewable Energy at the Department of 
Energy, and more than 5 years of experience at DOE managing the development and analysis of 
hydrogen production and delivery technologies. Production technologies included electrolysis, 
natural gas reforming, biomass gasification, and high temperature solar driven thermo-chemical 
cycles. Delivery technologies included gaseous pipelines and truck delivery, cryogenic liquid 
truck delivery, and the use of novel hydrogen carriers. Mark is a chemical engineer with an M.S. 
from Princeton University and a B.S. from the University of Pennsylvania. 
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