

Snake River Geothermal Project -Innovative Approaches to Geothermal Exploration

May 19, 2010

John W Shervais **Utah State University**

Validation of Innovative Exploration Technologies

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Mandatory Overview Slide

- Project Baseline information:
 - Timeline

Project start date: 24 March 2010Project end date: 23 March 2012

• percent complete: 2%

Budget

Total project funding: \$6,694,784

• DOE share: \$4,640,674

Awardee share: \$2,054,674

funding received in FY09
None

funding for FY10
Final Award Pending

- Barriers
 - Time line for approval of ICDP cost-share commitment
- Partners
 - International Continental Drilling Program, Southern Methodist University, Boise State University, University of Alberta, US Geological Survey

Relevance/Impact of Research

Objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration

- Our project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.
- The project has just begun formally; we have built on a series of workshops and preliminary studies carried out over the last five years to implement project goals quickly.
- Innovative aspects of our project include:
 - Deep (1.2-1.8 km) slim boreholes to document thermal gradients, stratigraphy, and lithologies at depth and correlate with inferences from surface studies,
 - Use of core and bore hole viewers to document fracture porosity,
 - Use of a wide range of surface and borehole geophysical techniques on a preselected set of geothermal test wells.
 - The comparison of data from three distinct settings within the SRP region.

Relevance/Impact of Research

Objective: Address Barriers to Geothermal Exploration and Development

- Improve the availability of accurate and reliable resource data in southern Idaho, which has a high potential for GT development.
- Reduce Exploration Risks and Up-front Costs by validating integrated geological and geophysical techniques that increase success rates in exploration and development.
- Education Workforce Development Educating graduate students in GT exploration, and creating new programs in GT education at the undergraduate level.
- Workforce Development: Project will involve Faculty and Students from 15 Universities and Colleges in US in all aspects of research.

Science Overview

Science Overview

Scientific/Technical Approach

- Planned research will compare gravity, magnetics, surface seismic, resistivity, borehole vertical seismic profiles, and borehole logging techniques, as well as surface mapping, data compilations, and remote sensing.
- Results will include three slim hole test wells (1.2-1.8 km) with temperature gradient and hydrologic conductivity measurements, vertical seismic profiles, and borehole geophysical logs to document the geothermal potential of each setting.
- Hydraulic testing and fracture analysis used to document porosity-permeability and geothermal potential of sites.
- Core from each borehole will document detailed stratigraphy of each site.

Scientific/Technical Approach

- Detailed Gravity & Magnetics: US Geological Survey
- Geothermal Gradient/Heatflow: SMU GT Lab (Blackwell)
- 2D seismic surveys: Boise State Shallow Geophysics Institute and Univ Alberta Centre for Earth Physics.
- Long sweep times using both p-wave and s-wave methods (sources and receivers), and also modeconversions and anisotropy.
- We will rely on borehole geophysics to ground-truth our surface results and forward model using observed velocity and density measurements.
- We will estimate flow parameters (fracture porosity, transmissivity) using fracture modeling software (FREDTM, FRACMANTM, & MAFICTM). [Utah State Univ]

Accomplishments, Expected Outcomes and Progress

Technical accomplishments – Progress & Plans

- Data compilations and mapping in progress, lease agreements being negotiated, permits applied for.
- Planned activities to begin as soon as funds released
 - Gravity, magnetic surveys (USGS)
 - Seismic reflection surveys (Boise State, Univ Alberta)
 - Drilling at first site begins in July
 - Wireline logs, Temperature logs, and VSP as wells completed (BHT monitored while drilling).
- Team qualifications, special facilities or equipment.
 - DOSECC >30 years experience geothermal/scientific drilling
 - Atlas-Copco 4002 drill rig purchased with this project in mind

Scientific/Technical Approach

Project Management/Coordination

- Project Management Plans:
 - Project Managed by Project Director (Shervais) with executive committee of co-investigators. PI has worked on DOE-funded studies of core at SRS and has 10 years management experience.
 - USU Contract Office provides budget and accounting help.
 - Project management software used to manage time lines and task coordination.
- Data Management
 - Complete data management system implemented, with primary data entered through ICDP Drilling Information System.
 - Corewall and Psicat used to annotate core and correlate with digitized wireline log data.
 - All systems will be interfaced with the National Geothermal Data System, in cooperation with Walt Snyder at Boise State.
 - All data uploaded to project website using data base functions.

Project Management/Coordination

Future Directions

- Deployment strategy FY 2010
 - Geologic Mapping and Data Compilation: Spring-Summer 2010 (in progress).
 - Geophysical surveys roll out summer-fall 2010
 - Drilling slim hole test wells begins July 2010 and continues until all three holes completed (into FY 2011).
 - Milestones:
 - ✓ Completion of Geophysical and Geologic Field Campaigns
 - ✓ Completion and Testing of Kimama GT well
 - ✓ Completion and Testing of Kimberly GT well
 - ✓ Completion and Testing of Mountain Home GT well

Mandatory Summary Slide

- The Snake River Plain represents an *Active Volcanic System* associated with the *Yellowstone Hotspot*, buts its *Geothermal Potential* is Unexplored.
- We will combine geological and geophysical studies on surface with deep slim hole test wells and a full array of downhole geophysical studies to test which approaches represent the most robust exploration techniques.
- We will model fracture porosity using computer software tools normally applied within the petroleum industry.
- This project will interface with Project Hotspot an initiative that will complement the GT goals (NSF support pending).
- This project will have a significant impact on workforce development at graduate and undergraduate levels.

Supplemental Slides

Supplemental Slide

- Shervais, J.W., Branney, M.J., Geist, D.J., Hanan, B.B., Hughes, S.S., Prokopenko, A.A., Williams, D.F., 2006, HOTSPOT: The Snake River Scientific Drilling Project – Tracking the Yellowstone Hotspot Through Space and Time. *Scientific Drilling*, DOI:10.2204/iodp.sd.3.14.2006.
- Walton, A.W., Miller, K.G., Koeberl, C., Shervais, J., Colman, S., Hickman, S., and Clyde, W., 2009, The Future of Continental Scientific Drilling: US Perspective: DOSECC Workshop Report 1, http://www.dosecc.org/Future_of_CSD_Final_Report.pdf
- PI Shervais was co-convener of workshop "The Future of Continental Scientific Drilling: US Perspective" held in Denver, Co, in June 2009.
- PI Shervais is co-convener of upcoming workshop "Developing the US Initiative in Continental Scientific Drilling" to be held in Arlington, Va, in June 2010.