
Beowawe Binary Bottoming Cycle

May 19, 2010

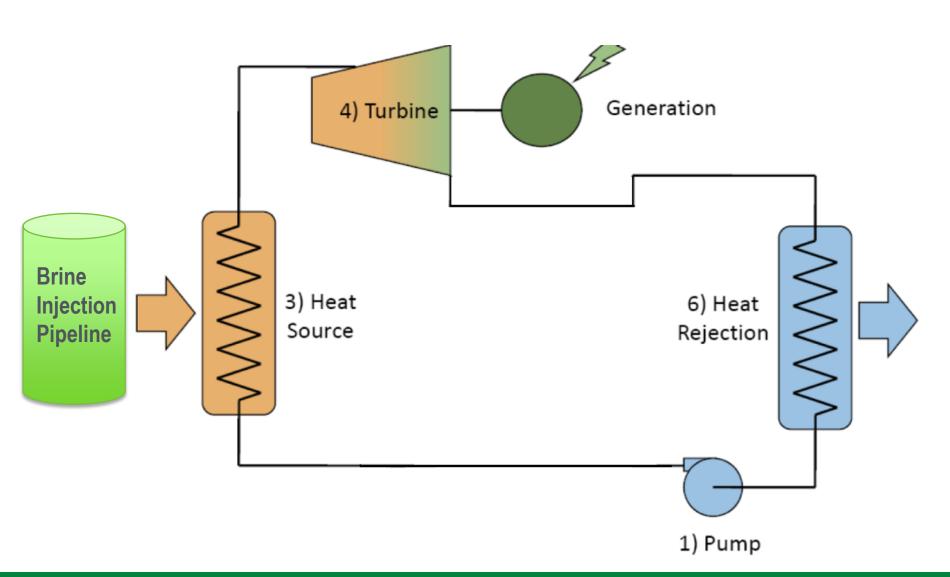
Principal Investigator Dale McDonald Presenter Name Dale McDonald Organization Beowawe Power

Project Overview

- ~30% Complete
- Budget
 - \$4.4MM total project
 - \$2.0MM DOE award, \$2.4 recipient share
 - \$0 funding FY '09, \$2.0MM FY '10
- Partners none

Project Overview

Barriers


- Access to transmission none since it's tied in to existing plant
- Lack of Reliable Resource Information above-ground nature of project reduces resource risk, but impacts to resource enthalpy unknown
- Siting, Leasing & Permitting minimal modifications to existing permits required, private land site negates the need for BLM review

Relevance/Impact of Research

- Use of waste heat from low temperature brine otherwise lost
- Produces additional renewable energy without using additional geothermal resource
- Cost effective
 - additional well drilling is not required
 - existing plant infrastructure and space available
- Improves overall plant efficiency, since additional geothermal resource is not required
- Minimal impacts on existing plant
- Operational testing of scaling potential of lower brine temperatures beneficial to other similar facilities
- Provides operational database of a geothermal bottoming binary plant

Scientific/Technical Approach

Scientific/Technical Approach

Solicit Proposals

- Supply: specified available brine and ambient conditions
- BOP Engineering: identified plant tie-in requirements
- Construction: use defined scope of work with supply and BOP drawings

Analysis

- Effect on brine scaling potential
- Generation voltage level
- Makeup water requirements
- Permit Impacts
- Space requirements

Phase 1 Go/No-Go – June 2010

- Obtain Permits
- Complete Engineering
- Prove Economic Feasibility

Accomplishments, Expected Outcomes and Progress

Binary Plant Equipment Supply

- -Contract has been executed
- -Supplier engineering and material procurement is proceeding on schedule
- -Skid construction has begun

Permits

- -No BLM NEPA review is required, installation is on private land
- -Air permit and injection permit modifications have been received
- -Building and pressure vessel permits during/post construction
- -No County Special Use Permit

BOP Engineering

-Complete

Construction

- -Water well pump building complete
- -Mechanical tie-ins scheduled for May outage
- -Electrical tie-ins scheduled for October 2010 Outage
- -Equipment installation scheduled for November with COD December 2010

Project Management/Coordination

Project Management Plan

- Phase 1 Feasibility Study, Permitting and BOP Engineering Design
- Phase 2 Procurement, Installation, and Commissioning of Equipment
- Phase 3 Operation and Maintenance

Schedule

- Phase 1 June 2010
- Phase 2 Supply Contract awarded Dec 2009, Complete by Dec 2010
- Phase 3 Perform O&M, Report Non-Proprietary Data for 2 Years

Spending Plan

- Phase 1 \$141,174
- Phase 2 \$4,193,206
- Phase 3 \$60,000

Future Directions

- Award Construction Contract June 2010
- Perform Mechanical Plant Tie-ins May 2010 Outage
- Complete Foundations August 2010
- Complete All Plant Tie-ins October 2010 Outage
- Equipment Delivered to Site November 2010
- Complete Construction, Commission, and Test December 2010
- Ongoing O&M, DOE Reporting, and Brine Chemistry Monitoring

 thru December 2012

Project Summary

- Extraction of Waste Heat From 205F Geothermal Brine
- New Injection Temperature 150F With No Scaling Expected
- 1.8 MW Net Renewable Energy Added With No Additional Geothermal Resource
- Minimal Makeup Water Required
- Minimal Impact on Air Permit