Geothermal Technologies Office 2013 Peer Review

Energy Efficiency & Renewable Energy

Hybrid Geothermal-Solar

Project Officer: Tim Reinhardt Total Project Funding: \$285K April 22, 2013

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Principal Investigator: Greg Mines (INL) & Desikan Bharathan (NREL) Presenter: Dan Wendt (INL)

Low Temperature

Objective: Evaluate the feasibility of integrating concentrated solar power (CSP) into operation of air-cooled binary plant

- Challenges: Hydrothermal resource productivity
 - Production may not match plant design conditions
 - Lost revenue from reduced power sales
 - Penalties for not meeting contractual levels of output in power purchase agreement (PPA)
 - Cost and risk associated with drilling makeup wells may not be sufficient resource capacity to makeup production shortfall
- Innovation: CSP hybrid plant
 - Increase power generation during hotter periods of day (high demand)
 - Restore geothermal fluid temperature to design value
- Benefits
 - Potential to lower risk associated with developing well field
 - Alternative to makeup well drilling
 - Expand geothermal development

Determine impact of resource productivity on binary power plant output

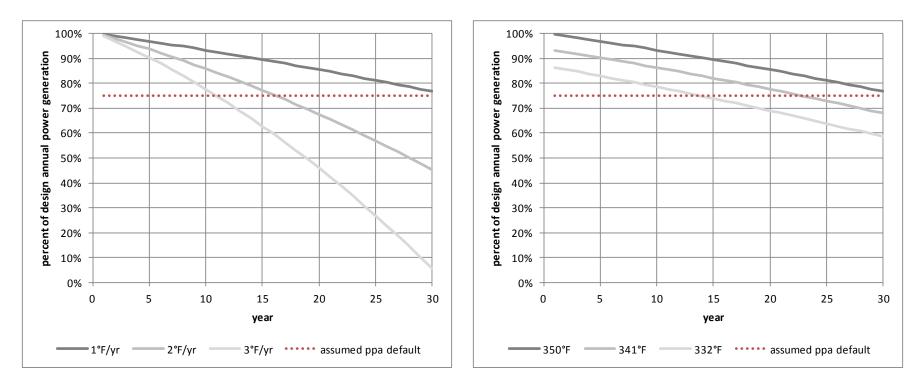
- Integrate methods to predict plant performance and project economics as functions of resource productivity
 - Predict hourly plant output over project life
 - Estimate project costs
- Quantify effects of deficient resource productivity
 - Use discounted cash flow analysis to establish generation cost at 'design'
 - Evaluate impact of resource productivity decline scenarios on power generation and net present value (NPV)
 - Assess effects of performance penalties and time of day pricing

Establish the potential of CSP to mitigate effects of lack of resource productivity

- Integrate concentrated solar power (CSP) supplemental heat and determine associated costs
 - CSP benefits relative to drilling makeup wells
 - Performance penalties and/or time of day pricing
 - Effect of reducing costs/risk associated with well field development on LCOE
- Optimize CSP array sizing and installation date
 - Identify resource/pricing scenarios where CSP provides benefit
 - Estimate the CSP costs needed to lower LCOE using hybrid plant technology

Accomplishments

- Simulated effect of resource productivity on binary plant output
 - Aspen Plus simulations of air-cooled plant
 - 20 MW_{net} design for 350°F and 280°F resource temperatures
 - Fix plant equipment sizes and establish sensitivity of power output to production fluid and ambient temperatures
- Evaluated hybrid binary plant configurations
 - Preheating geothermal fluid produces more power than postheating (did not examine heating working fluid directly)
 - Higher temperature resources require less CSP heat input to restore power production to the same level after equivalent levels of temperature degradation
- Developed geothermal-solar evaluation model to assess potential scenarios and benefits


Geothermal-Solar Evaluation Model

Model Input

- Aspen Plus plant simulation results model performs data regression to predict binary plant performance as function of ambient and resource conditions
- Well field costs from GETEM
- CSP performance, CSP cost, and ambient temperature data imported from NREL System Advisory Model (SAM)
- Resource performance and financial assumptions (user defined) *Model Output*
- Calculation of hourly power generation for entire project life
 - Design vs. actual
 - Function of resource temperature & flow and CSP sizing & performance
- Discounted cash flow analysis
 - Establish selling price for power at design scenario
 - Determine net present value (NPV)

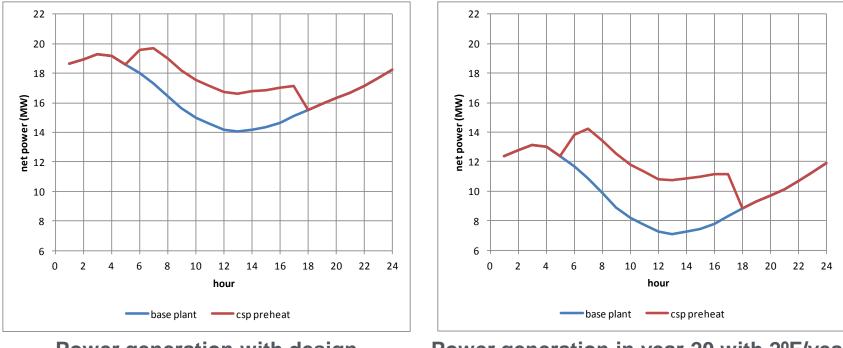
Accomplishments, Results and Progress

Effect of resource temperature decline on 20 MW plant in NV (350°F design)

Fluid temperature decline of 1, 2, and 3°F/year with 350°F (design) initial production temperature

Fluid temperature decline of 1°F/year with initial production temperatures of 350°F (design), 341°F, and 332°F

U.S. DEPARTMENT OF


ENERGY

Energy Efficiency &

Renewable Energy

Case Study

- 350°F design resource temperature, 2°F/year decline; northern NV location
- CSP array sized to recover 50% of difference between mid-June min and max daily power generation at design condition (283,500 ft² array; ~\$10M)

Power generation with design resource conditions

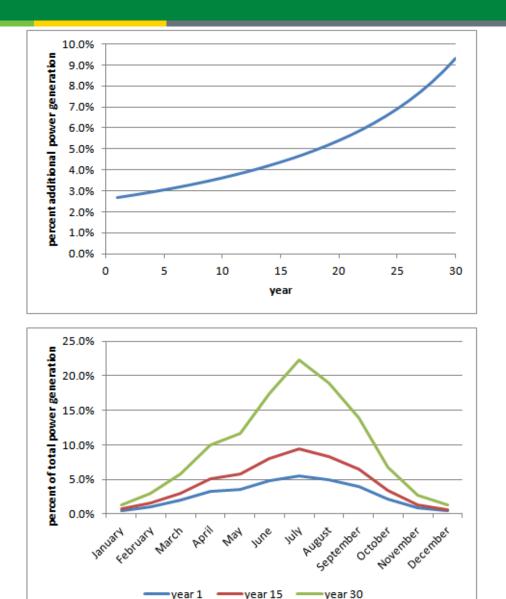
Power generation in year 20 with 2°F/year decline from design temperature

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

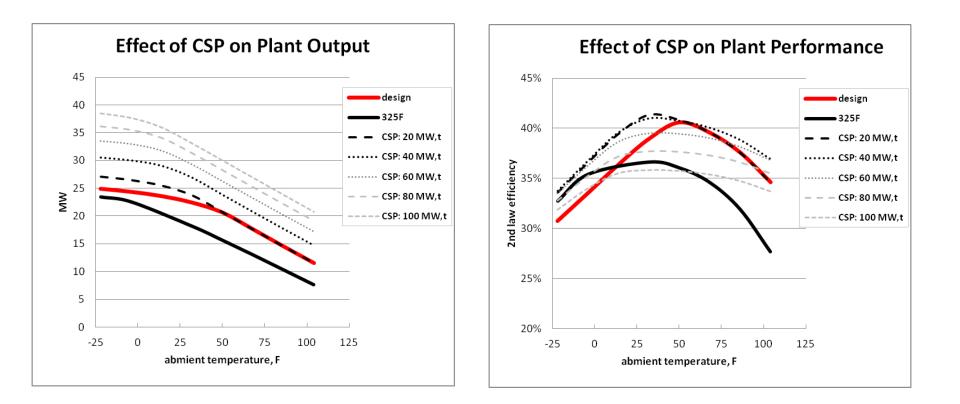
Renewable Energy


Accomplishments, Results and Progress

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Case Study (continued)


- Percent of power generation attributed to CSP increases with time (constant array size)
- Percentage of total power generation from CSP is maximum in summer (and in middle of day)

Accomplishments, Results and Progress

Energy Efficiency & ENERGY **Renewable Energy**

U.S. DEPARTMENT OF

The effect on plant output and performance when of adding varying levels of heat to a 20 MW plant whose produced fluid temperature has declined from 350°F (design) to 325°F

Geothermal-Solar Evaluation Model Analyses Planned

- Effect of different scenarios for resource productivity and CSP input on both power generation and NPV
- Determine date and size of CSP array installation to maximize NPV
- Effect of level vs. peak pricing
- Effect of reducing financing costs during development of well field: less risk because CSP can offset lack of initial resource productivity
- Cost and performance of CSP vs. drilling makeup wells

Preliminary Results

- CSP can bring plant output and conversion efficiency to design levels and above
- CSP impact on plant output increases as production fluid temperature decreases from design value
- Economic benefit
 - CSP can improve NPV when PPA penalties might be imposed
 - Time of day pricing scenarios can produce more favorable hybrid plant economics
 - Reduced CSP capital costs will improve potential for positive NPV
 - CSP could lower generation costs if it reduces risk & financing costs during confirmation and development of resource

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Develop evaluation model to assess different resource and pricing scenarios – April 2013		
Show that CSP augmentation produces a plant conversion efficiency \geq design – May 2013	Can show that CSP can restore plant efficiency to design; have not shown economic feasibility of doing so	Feb 2013
Identify plant configuration and scenario that lowers LCOE – January 2014		
Final report that identifies resources conditions that justify use of CSP – August 2014		

ENERGY Energy Efficiency & Renewable Energy

FY2013

- Complete development of regressions that allow both lower resource temperature and flow to be evaluated simultaneously – April 2013
- Perform thorough evaluation of expanded range of resource conditions and levels of CSP inputs – August 2013
- Assess potential impact of CSP in reducing risk during well field confirmation and development – September 2013

FY2014

- Assess potential for CSP capital cost reductions
- Complete economic assessment of viability of using CSP
- Prepare final report

- CSP can restore/improve hybrid plant output and performance
- Benefit from utilizing additional solar heat
 - Increases as geothermal fluid temperature decreases
 - Begins to diminish once heated geothermal fluid temperature exceeds the plant design value
- The hybrid plant can improve project NPV when used to avoid penalties associated with low power output caused by decreased resource productivity

Project Management

ENERGY Energy Efficiency & Renewable Energy

- Monthly internal INL review of cost and schedule explanation required for variances
- Project on or slightly ahead of schedule
- Utilization of tools developed by others to assess impact of CSP on binary plant (binary plant simulations, SAM, GETEM)
- Plan to present results at GRC

Timeline:	Planned	Planned	Actual	Actual /Est.
	Start Date	End Date	Start Date	End Date
	10/1/2012	9/30/2014	10/1/2012	9/30/2012

Budget:	Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work	
	\$285,000	\$0	\$73,000	\$70,000	\$70,000	\$215,000	