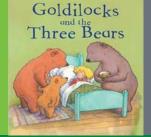
This presentation does not contain any proprietary confidential, or otherwise restricted information.

Geothermal Technologies Office 2013 Peer Review


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Energetic Materials for EGS Well Stimulation (solids, liquids, gases)

Project Officer: Lauren Boyd Total Project Funding: \$1.6M April 24, 2013

Mark Grubelich, Sandia National Lab

Track Name: HT Tools

Sandia National Laboratories is a multi-program laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SANDXXXX-XXX

U.S. DEPARTMENT OF

• Objective: Develop environmentally safe and field deployable, energetic systems (liquid, gas, and solid phase) that enables branching, far field fracturing and/or stimulate existing fractures.

• Problem: Enhanced Geothermal Systems (EGS) require reservoir stimulation. Typically used energetic methods/materials are:

- High Explosives; causes local damage and thus little far field fracture propagation

 Propellants; predominantly extends existing fractures, less effective at generating multiple fractures

 Solution: Energetic methods/materials for controllable pressurization rates and peak pressures – key innovation

 Rapid pressure rise to below the reservoir "rubblization" strength (lower than high explosives) yet above that achieved by propellants

 Design and demonstrate a engineered energetic materials to produce a tailored pressure pulse to initiate multiple near well bore fractures and propagate these fractures to the far field.

- All systems are designed to have benign environmental interactions and be safe enough for field deployment at large scales.

Relevance/Impact of Research – 2

- Impact on geothermal energy development:
 - Reduced risk and costs associated with development
 - Increased fracturing efficiency
 - Safe, economical systems
 - Reduced borehole impedance

Impacts Geothermal Technologies
Program goals:

 Lower development cost: EGS well productivity is essential to 5 MW demonstration and LCOE Program goal.
This stimulation technology is directly aligned with achieving higher productivity from EGS reservoirs and wells.

Cost impact example:

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Table I: GETEM Cost Analysis for Flash and Binary Production with and without Single and 3 Fractures

Flash/ Binary	Temperature (°C)	Improvement	Cost of Power 2010 (cent/kw)
Flash	250	N/A	11.53
Flash	250	3x flow rate	6.88 (40% Less)
Binary	175	N/A	31.94
Binary	175	3x flow rate	16.02 (50% Less)

Note: Assumed 30 kg/sec base flow rate, 4 km well depth.

From S. Petty et al. Stanford 2011

• Scientific/technical approach for <u>current year's activities:</u>

Gas system:

- Complete lab scale system validation and shakedown at scheduled pressures (150 to 500 psi gas mixture pressure)
 - Compare computational pressure profiles to measured data
- Demonstrate system in shallow test well
 - Measure pressurization rates and peak pressure
 - Videography of well bore features
 - Permeability measurements via gas pressurization and leak-off

Solid system:

- Down select candidate(s) binary systems based on measured properties for safety (most important), maximum reaction rate (secondary), peak pressure (tertiary).

- Compare computational pressure profiles to measured data
- Design of high pressure hydro-bomb
- Lab scale testing of selected solid energetic system in fluid environment
 - Pressure time history measurements

Scientific/Technical Approach

U.S. DEPARTMENT OF

- Key issues & significance:
- SAFETY!
 - Gas system field demonstration safety built into test plan, Purdue & New Mexico Tech. written test plan, 100% remote operation
 - Solid system friction, electrostatic discharge, impact, and thermal stability characteristics being measured.
- 'Tunable' = Demonstrate variable pressure generation so the technology can be adopted in a variety of formations
 - Achieved through chemistry modifications (solids) and density control (gas)
- Scalability
 - Achieved successful scale up from system validation in the lab to field demonstration (gas)
 - Ready path to commercial deployment = low material costs, materials safe for handling and transport, benign environmental interactions
- Additional diagnostics: seismic imaging could not be afforded for the given budget & GPR would suffer from unacceptable attenuation through shallow weathered zone

The systems:

- H₂O₂ >> Steam (water) + Oxygen
- N₂O + C₂H₄ >> Steam (water) + Nitrogen + Carbon

KCIO₄ + Si + H₂O >> Potassium Chloride (salt substitute)

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Major accomplishments during reporting period:

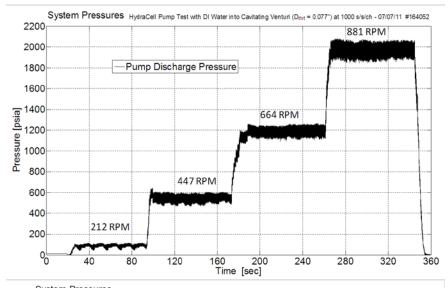
- -Proof-of-concept liquid mono-propellant, liquid decomposition/gas generation rate
- -Proof-of-concept gas bi-propellant, pressure vs. time data
- -Safety characterization of solid system
- -Shallow test well demonstration of gas phase bi-propellant

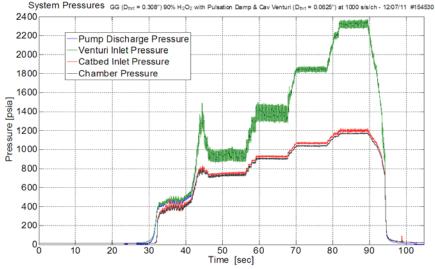
Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Proof-of-concept gas bi-propellant (lab testing) 9/2012	Proof-of-concept gas bi-propellant (lab testing)	02/2012-2/2013
Solid system safety, reaction rate, and peak pressure measured by 6/2013	Candidate solid system safety properties measured	2/2013
Shallow well field test of gas phase system by 4/2013	3x shots at New Mexico Tech. testing range (150/150/250 psi)	3/7/2013

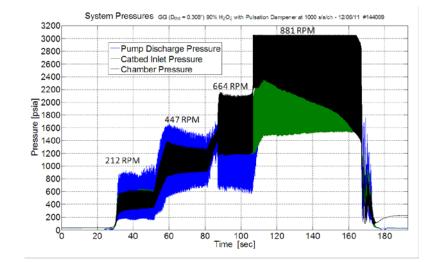
HP H2O2 Pump System

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy






8 | US DOE Geothermal Office

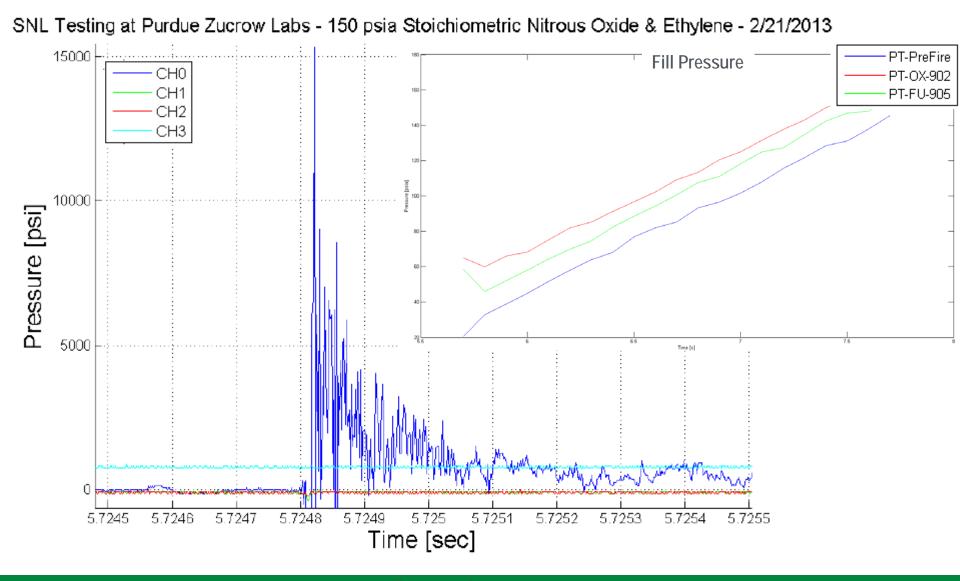
H₂O₂ Gas Generator Pump Test 4000 HP

ENERGY Energy Efficiency & Renewable Energy

Solid system safety testing:

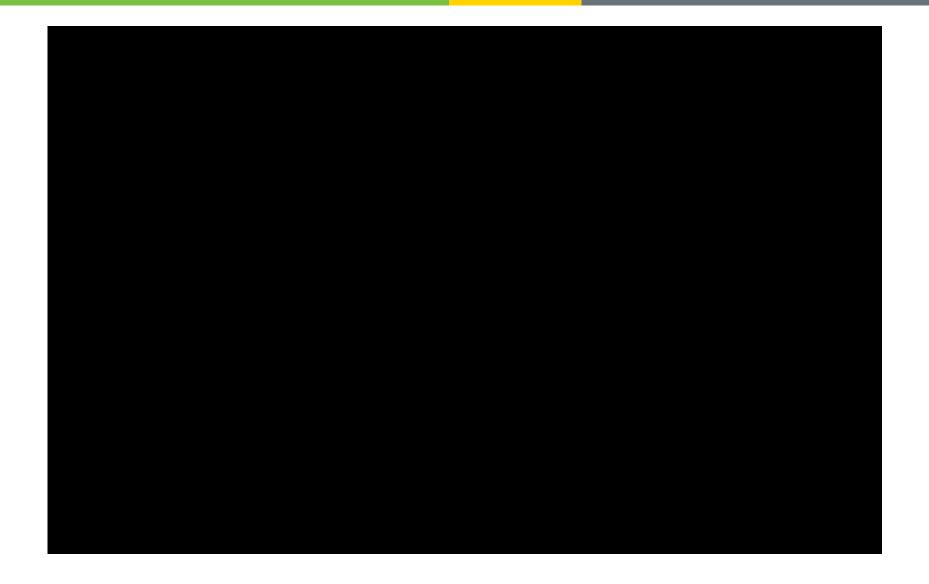
Energy Efficiency & Renewable Energy

Sample	Batch	Impact (cm)	Average	BAM (friction, N)	Average	Ignition Sensitivity (kV)	Average
	1	>200		110		1.34	
1	2	198.7±2.3	199.5	141	136	1.41	1.39
	3	>200		157		1.41	
	1	>200		110		1.41	1.41
2	2	199.5±0.0	199.8	110	152	1.41	
	3	>200		235		1.41	
	1	>200		>353		>3	
3	2	>200	>200	282	290	>3	>3
	3	>200		235		>3	
	1	>200		282		1.73	
4	2	199.5±0.0	199.8	>353	306	1.41	1.63
	3	>200		282		1.73	
5	1	198.9±1.1	199.1	282	294	<1	<1
	2	199.3±0.3		247		<1	
	3	199.2±0.4		>353		<1	
	1	>200		247		>3	
6	2	>200	>200	>353	278	2.24	2.63
	3	>200		235		2.65	
7		>200		>353		2.65	
8		>200		>353		>3	
9		>200		235		>3	
10		>200		177		2.24	

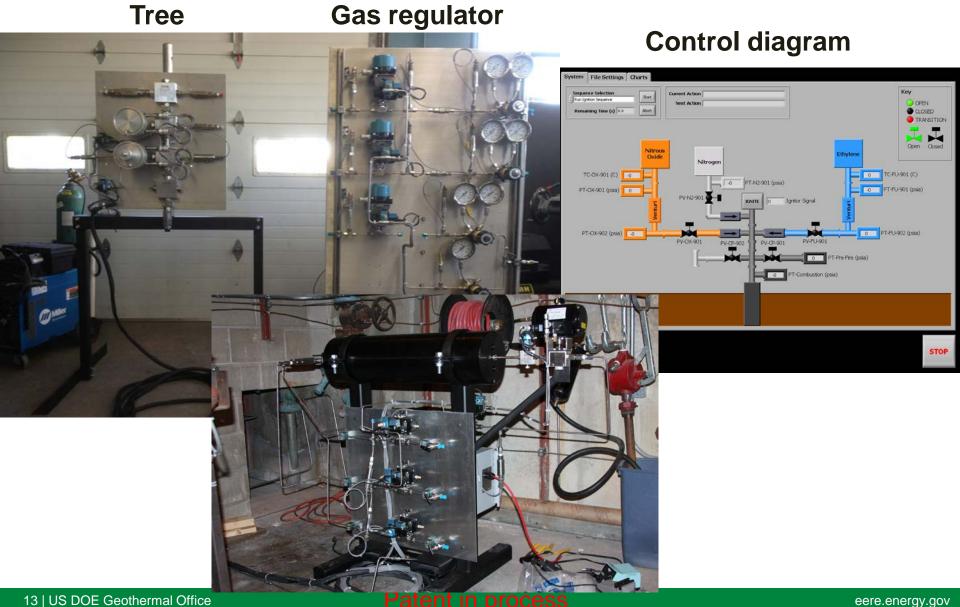

Ignition Sensitivity

BAM Friction Apparatus

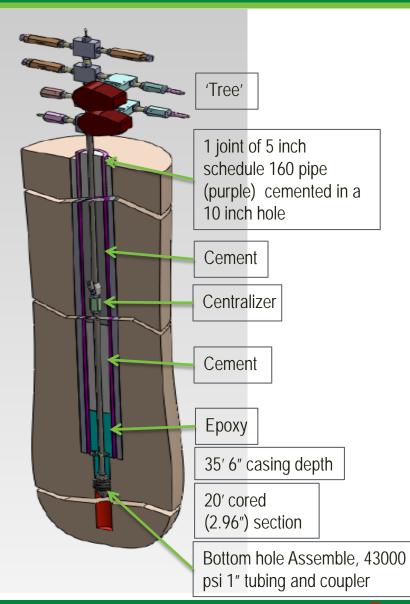
Accomplishments, Results and Progress: Proof of concept (gas phase) lab test


ENERGY Energy Efficiency & Renewable Energy

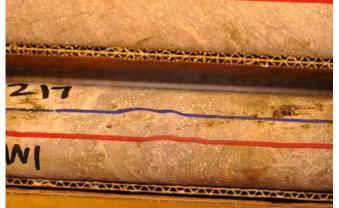
Accomplishments, Results and Progress


Energy Efficiency & Renewable Energy

Gas phase hardware


Energy Efficiency & Renewable Energy

Field demo gas phase bi-propellant Test well W-1


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Test location: Blue Canyon Dome, EMRTC

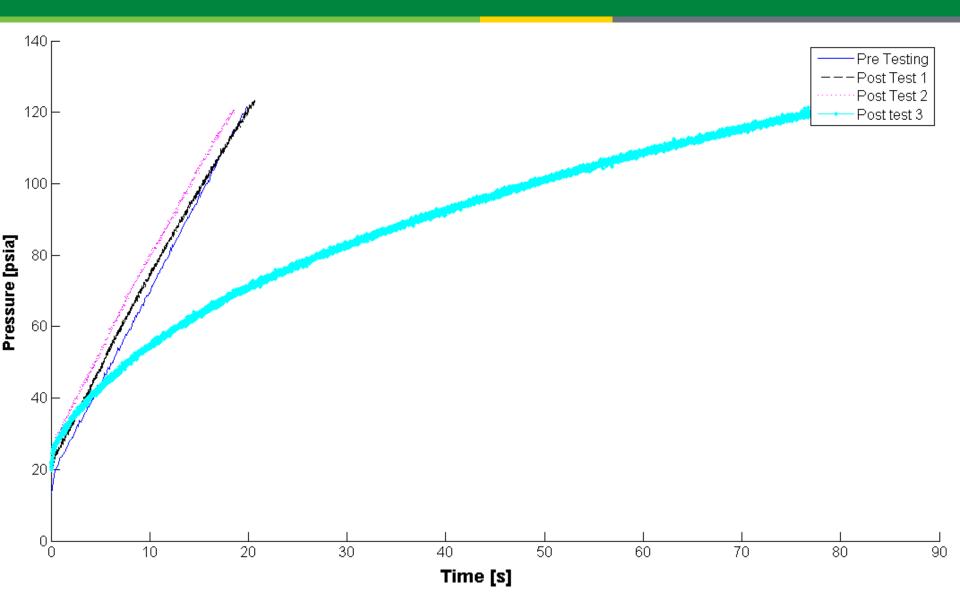
Core shows the test well rock is competent rhyolite with a few fractures.

14 | US DOE Geothermal Office

From field demo:

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


eere.energy.gov

N2 leak-off data from the field (1 of 2)

140 -Pre-Testing Post Test 1 Post Test 2 120 Post Test 3 100 Well Pressure [psia] 80 60 40 20 0 L 0 500 1000 1500 2000 2500 3000 3500 4000 4500 Time [s]

Energy Efficiency & Renewable Energy

N2 fill rate data from the field (2 of 2)

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

Future Directions

- Additional gas phase bi-propellant field testing in W-1 at EMRTC
- Based on shallow well demonstration testing, design, fabricate hardware for, and execute full/commercial scale test – to be completed by end of FY2015
- Possible high pressure injection of liquid (H2O2) in shallow test well FY2014
- Proof-of-concept test of solid system by end of FY2014

Milestone or Go/No-Go	Status & Expected Completion Date
Solid system reaction rate and peak pressure measurements by 6/2013	5 weeks behind schedule; completion as expected
Design and fabricate hydro bomb by 9/2013	May adapt existing hardware (detonation calorimeter), on schedule
Testing solid system in fluid environment by 10/2013-12/2013	Completion as expected, on schedule

- Proof-of-concept achieved for H202 pump-fed system
- Proof-of-concept achieved for bi-propellant gas phase system
- Successful field demonstration of bi-propellant gas phase system; 3 shots at variable pressures
 - Measured change in permeability
 - Data measurement for peak pressure

Project Management

Timeline:	Planned	Planned	Actual	Actual /Est.
	Start Date	End Date	Start Date	End Date
	1/1/2010	8/30/2015	2/25/2010	8/30/2015

Budget:	Federal Share	Cost Share	Planned Expenses to Date		Value of Work Completed to Date	Funding needed to Complete Work
	\$1,600,000	\$0	\$2,200,000	\$1,343,000	\$1,003,750	\$4,000,000

What you don't see: \$1.5 M in direct leveraged funds (hardware & labor)

Coordination between proof-of-concept testing at Zucrow Labs, Purdue University and Energetic Materials Research and Testing Center, New Mexico Tech