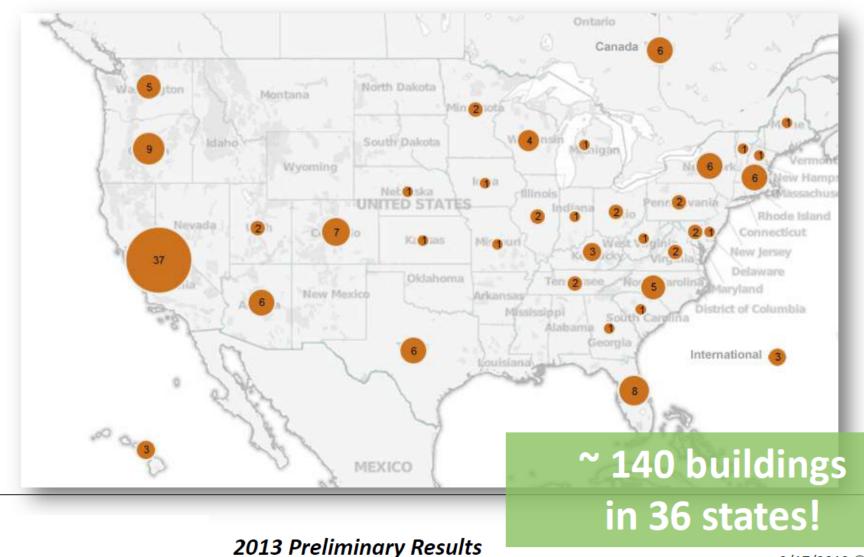
FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR January 14-15, 2014 Golden, CO

Net Zero Energy Buildings: Are We There Yet?

Shanti Pless

Senior Energy Efficiency Research Engineer, NREL

COMMERCIAL ZEBS ARE HERE!



Locations: 2013 ZNE Buildings

9/17/2013 © NBI

Current Net Zero Energy Building Drivers

Organization	Effort Type	Definition
Living Building Challenge	certification	Site energy
Massachusetts	task force	Site energy
PG&E	pilot program	Site energy
University of California	campus-wide initiative	Emissions (CO ₂ only?)
GSA	working group	TBD
Federal Government	Executive Order 13514	Site energy

"... implement high performance sustainable Federal building design, construction, operation and management, maintenance, and deconstruction including by: (i) beginning in 2020 and thereafter, ensuring that all <u>new</u> <u>Federal buildings</u> that enter the planning process are designed to <u>achieve</u> <u>zero-net-energy</u> by 2030 ..." (Sec. 2. Goals for Agencies. (g)(i))

OBERLIN COLLEGE ENIS CENTER

6XODI

2000

13,600 SF Higher Education Oberlin, OH

Image courtesy of NREL PIX

3,600 SF Interpretive Center Kona, HI

HAWAII GATEWAY

10,000 SF Office Building San Jose, CA

Image courtesy of EHDD Architecture

EAS Z SQUAREL

INGLEARNING CENTER (YSON RESEARCH CENTER)

2,968 SF Higher Education Eureka, MO

Image courtesy of inhabitat.com

OMEGA CENTER OR SUSTAINABLE LIVING

2009

6,246 SF Interpretive Center Rhinebeck, NY

Image courtesy of BNIM

NREL RESEARCH SUPPORT FACILITY

220,00 SF Office Building Golden, CO

Image courtesy of RNL

F

RSF THIRD WING

Office Building Golden, CO

Image courtesy of RNL

IRE

SACRAME UNCIPAL UTILITY DISTRIC

335,000 SF **Office and Shop Buildings**

SMUD FAS

SMUE

Sacramento, CA

Image courtesy of RNL and Stantec

-**Photovoltaic Array**

330,000 SF Museum San Francisco, CA

EXPI

Image courtesy of EHDD Architecture and Integral Group

_ORATORIUM

40,000 SF Office Building Los Altos, CA

Image courtesy of EHDD Architecture and Integral Group

NDATION

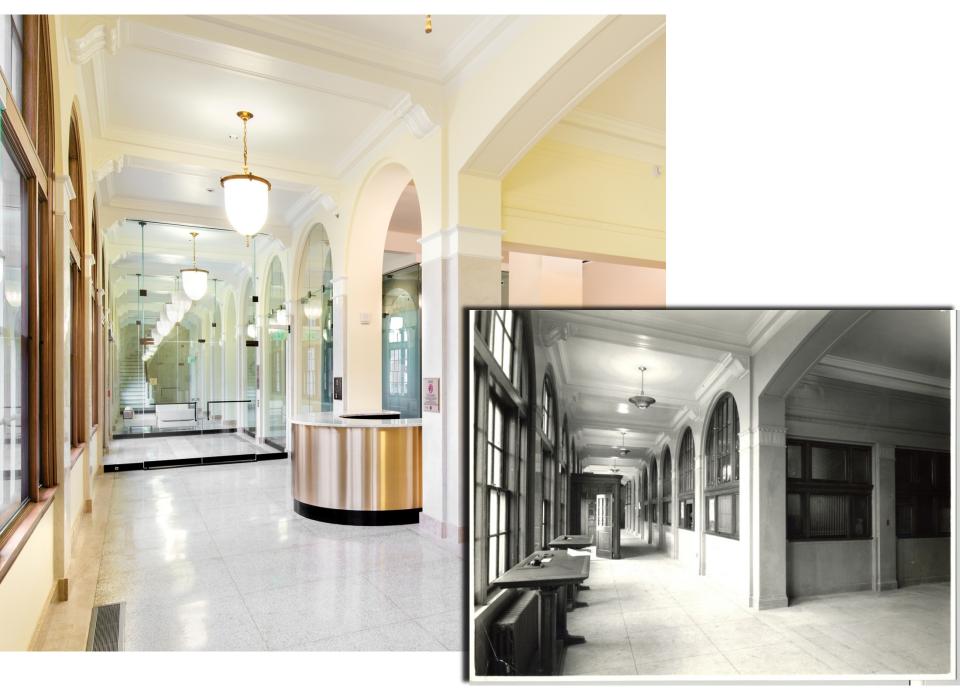

50,000 SF Office Building Seattle WA

Image courtesy of Bullitt Foundation and Miller Hull Partnership

WAYNE ASPINALL FEDERAL BUILDING

40.000 SF GSA COU To Junction Image courtesy of GSA, Beck Group and Westlake Reed Leskosky

COMMUNITY SCALE

Net Zero at What Scale?

- Net Zero for single projects (residential and commercial) is being done now
- Opportunity to ramp up single project net zero capabilities to a larger scale
- Net Zero Campus/Community/Base
 - Take advantage of energy systems integration
 - Reduce costs through economies of scale
 - \$/watt for PV is significantly less when procured as a larger buy
 - Account for load diversity in district heating and cooling systems
 - Development guidelines to ensure best practices are put in place
 - Integrate other loads into the net zero boundary
 - Transportation
 - Food
 - Industry

Net Zero is appropriate at ALL scales! But especially at the scale you are working at...

NR

S. Mar

10

1.1

APRIL OF LO

Stitute

CHIER STOP

And and a state of the state of

SEESTIMATION OF

And Mariananan

JEAN

And the owner of the owner own

1

10

M

Statistic Land - Very - Statistics

Net Zero Campus Efforts at NREL

NREL Campus Net Zero by 2020 is the Goal!

- All new facilities net zero
 - Low-load facilities net zero on site
 - 360,000ft2 office buildings, Site entrance buildings, parking garage offsets for office buildings
 - High load facilities best-in class efficiency
 - Off-site new large scale wind
- Retrofit of old facilities
 - Lab continuous control improvements
 - Lighting upgrades from T12 to LED
- Wood chip fired district hot water system
- Large Scale Campus Renewables
 - Wind, solar
- Development of a Net Zero Campus energy model
 - Integrated model for buildings, electrical transportation, thermal district system, electrical distribution system
- Net Zero Campus Informatics

What Had to Change?

-Top-down requirement for energy priority, on par with project schedule, budget, and quality

-Organization-wide involvement and continuous communication about NZEB performance

Aspect	NZEB Distinction		
NZEB procurement	Integrate NZEB and energy use intensity requirements into project contracts		
Design and modeling	Require use of advanced energy modeling tools to understand how all design decisions impact NZEB goals		
Energy efficiency robustnessDevelop understanding of risks associated with each ene efficiency technology prior to implementation			
Aggressive plug and process load reduction	Engage user groups and all procurement activities to ensure that highest efficiency equipment is installed and is only on when actually needed		
Renewable energy integration	Plan early for large PV arrays on roof area and over site parking		
Energy performance assurance	Provide metering and performance feedback, occupant education, change management for occupants and future programming, community outreach		

Who Had to Change?

Senior managers, contracting officer, project manager, information services

Designers, modelers, contractors, commissioning agents

Food services and vending

Building manager, operations and maintenance, utilities, custodial, security

Building occupants

Feasibility of Net Zero Energy Buildings

- Case studies show that net zero energy buildings (NZEBs) can be procured with a 0%–10% premium on typical construction costs
- Payback periods of 12–15 years for higher modeled premiums (NBI 2012)
- Based on NREL's experience and results from case studies, the lower bounds of initial capital cost premium are possible when a project team:
 - Selects energy efficiency as a project priority
 - Integrates simple and passive efficiency strategies
 - Downsizes or eliminates heating, ventilation, and air conditioning (HVAC) equipment based on passive envelope design
 - Specifies readily available and tested technology
 - Implements experimental strategies only when necessary
 - Maximizes the use of modular and repeatable design strategies

"... establish an integrated strategy towards sustainability in the Federal Government and to make reduction of greenhouse gas emissions a priority for Federal agencies ..." (Preamble)

"... implement high performance sustainable Federal building design, construction, operation and management, maintenance, and deconstruction including by: (i) beginning in 2020 and thereafter, ensuring that all <u>new</u> <u>Federal buildings that enter the planning process are</u> designed to <u>achieve zero-net-energy by 2030</u>..." (Sec. 2. Goals for Agencies. (g)(i))

NZEBs Are Next Logical Step For NASA

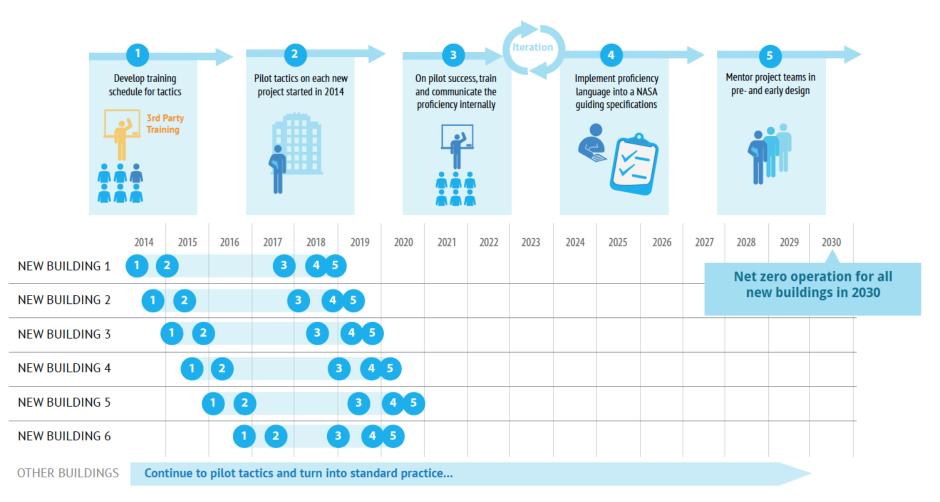
NASA ZEB Roadmap

To guide NASA's incremental transition to developing and operating NZEBs as Agency standard practice

Strategic

Establish clear interpretation of EO 13514 sections related to NZEBs

Organizational Proficiencies


Identify 6 key proficiencies essential to NASA's transition to NZEBs

Tactical

 Prioritize 57 tactics for Agency-level and building-level transition 	- 1	- P	Prioritize 57	tactics for A	Agency-level	and building	-level transition
--	-----	-----	---------------	---------------	--------------	--------------	-------------------

Proficiency	Tactic Count	Example Tactic
NZEB Workflow	8	Define performance assurance capability
Acquisition Process	12	Use integrated project delivery process
Energy Efficiency	20	Use passive design strategies
Renewable Energy	6	Apply NZEB classification process
Operations	9	Require submetering of building end uses
Achieve NZEB	2	Incorporate tactics to achieve NZEB design

Time-Phased Approach

NZEB definition: annual, **site energy goal fo**r new buildings Step 1. Best-in-class energy efficiency (EE), demand-side energy use intensity (EUI)

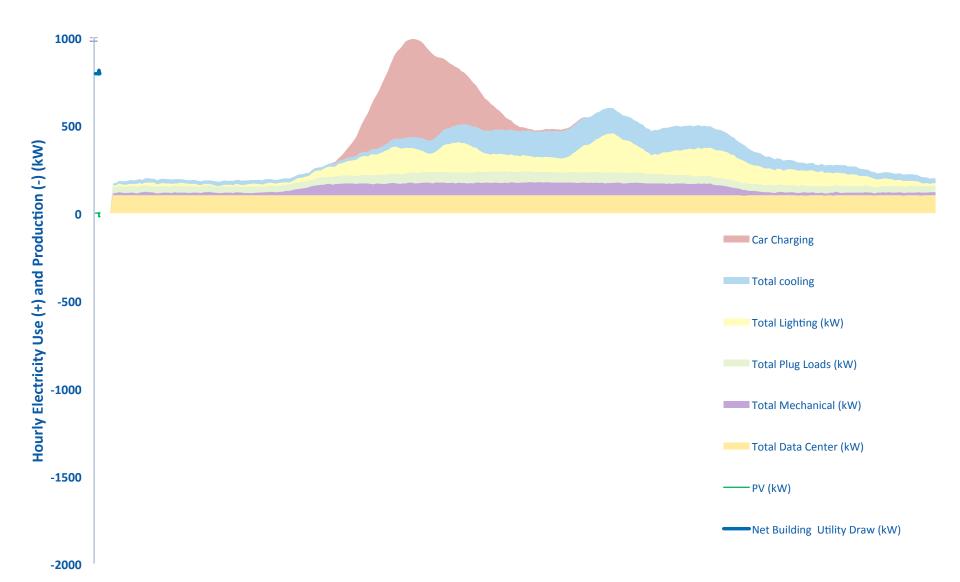
50% reduction versus AHSRAE Standard 90.1-2010 starting in 2020

Step 2. Maximize zero-emitting roof/building-integrated RE

All buildings meet a minimum 20% of the RE requirement at this step

Step 3. Maximize zero-emitting site/center RE

All low-load buildings should meet NZEB design at this step


Step 4a. Consider imported RE from offsite

Evaluate current federal requirements and benefits beyond NZEB compliance, and perform a greenhouse gas LCA with guidance from EMD

Step 4b. Consider purchase of regional utility "green power"

Maximum 20% power purchase credits versus the RE requirement

Uncontrolled Load Profile for a Net Zero Office Building

Thanks and Questions

Shanti Pless Shanti.pless@nrel.gov

www.nrel.gov/rsf

