

Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report

Tadanori Tanahashi ESPEC CORP.

Feb. 26, 2013 2013 PV Module Reliability Workshop

ESPEC: Products for Testing of Solar Modules

Solar Panel Large Walk-in Chambers PID Evaluation System (Chamber with Insulation Rack & Leakage Current Meas. System)

DML -> TC Sequential Test

- **1.** Recognition of Current Situation
 - TC 200 is not enough (NREL PV Module Reliability Workshop, 2012).
 - Extended TC (ex. TC 600) may effective, but the long-term period is required.
 - In our experience, the interconnectors- / solder bonds- failures have been observed even in the moderate climate (ex. Japan).
- 2. Basic Concept

More Intense Stresses in Qualification Testing -> Depression of Infant Mortality -> Long-term Survive (Probably) = Elongation of Service Lifetime

- 3. Requirements
 - Time Saving
 - Similar Failure Mode with Thermal Cycling?
- 4. Dynamic Mechanical Load (DML)
 - DML induce the intense strain amplitude in ribbon (interconnector).
 - DML is so fast.
- 5. Proposal: DML -> TC Sequential Test
 - Consideration shall be given to the test condition (DML / TC)
 - 1st trial is carrying out in TG-2 (JP).

Task-2 Region: JP

Task-2 Region: JP

PV QA Task Group #2: Current Status (Discussion in IEC TC82/WG2 Meeting, Stresa & Oslo)

Proposed Test Sequence

- 1. Visual Inspection
- 2. EL image
- 3. Power Measurements
- 4. IR image
- 5. Insulation Resistance Testing
- 6. Wet Leakage Current Testing
- 7. Dynamic Mechanical Load (based on NP 62782 Ed 1.0)
- 8. <u>Temperature Cycling</u>, <u>TC/Humidity Freeze Cycling</u> Consideration shall be given to the number of cycles, temperature ranges, rates of temperature change, and dwell times, etc.
- 9. Visual Inspection
- 10. EL image
- **11. Power Measurements**
- 12.IR image
- **13. Insulation Resistance Testing**
- 14. Wet Leakage Current Testing

DML / TC Test --- Notes for Discussion

What are the issues which need to be addressed before we can submit the NWIP?

- 1. Availability of **Extended TC**
 - **Problems**: Become effective testing on the Today's PV modules?
 - (in the most recent technologies, components, and manufacturing techniques) Become the rejection test for immature manufacturing?
 - <u>Massive survey for commercial modules is needed to recognize the current status.</u>
 - To solve this issue, METI Project is ongoing.
- 2. Availability of **DML**
 - **Problem**: Differences / Similarities with the thermal fatigue.
 - Does the intense strain by DML induce a large number of cell crack?
 - The experimental evidences are needed.
 - To solve this issue, NREL-AIST collaboration is carrying out.
- 3. Availability of **Sequential Testing**
 - **Problem**: To establish the effective test, can the deficit of TC be complemented by DML?

ribbon crack: induced by DML?

solder crack/delamination: induced by TC?

- The experimental evidences are needed.

- To solve this issue, PV-QA TG-2 [JP] Trial is ongoing.

4. Is there any other issues?

DML / TC Test

Ongoing Experiments for the Establishment of Novel Test Procedure regarding with Thermal / Mechanical Fatigues

Asia Standards and Conformity Assessment Promoting Project (Supported by Ministry of Economy, Trade, and Industry)

Aim:

Massive Survey for the Degradation Profiles of Commercial PV Modules

<Thermal Cycling Test>

c-Si PV modules:

- 13 Types of c-Si PV Modules (Mono- / Multi- c-Si)
- Sample Size: 10 or 5 Modules/Module Type
- Purchased from Market (JP and Other Manufactures)
- Most Recent Designed PV Modules (> 2011)

Test Procedure:

- According to IEC 61215

10.11 Thermal Cycling Test

- Thermal Cycling: 200, 400, and 600 Cycles

(Extended TC Testing) 7

International PV Module Quality Assurance Forum

Extended TC Testing (200, 400, and 600 cycles) Sample: Commercial Available PV Modules (Multi c-Si) 2 Module Types, 10 Modules / Type

- Increase in Rs was observed in both modules (A: 2%, B: 6% in average).
- The changes of other I-V Parameters were little (almost stable).
- The asymmetrical dark area along bus-bar did not appeared in EL images.

Ref: T. Doi *et al.*, (2012) Statistical Evaluation of PV Modules with Extended Damp Heat Test and Extended Thermal Cycling Test, 2012 Annual Conference of RCPVT (AIST).

Region: JP

Task-2

- **Contributors: AIST: Coordination**
 - JET: Dynamic Mechanical Loading, Inspections
 - NPC: Laser Jsc Scanning (Inspection of Cell Crack)
 - **ESPEC:** Thermal Cycling Test

Objective: Compare with extended TC testing (TC: 600 cycles) <u>without Cell Cracks</u>

- Power Loss
- EL Imaging

(Multiplication of Asymmetric Dark Area along Bus-Bar)

- Laser Jsc Imaging (Multiplication of Cell Crack)

Modules: Type A / B (Multi-c-Si) (Module types are same with those in TC600 Testing) DML-TC: Each 2 Modules of 2 Types Reference: Each 1 Module of 2 Types

DML-TC Sequential Test

Multi-c-Si Modules

Type: A 192.5 W

Type: B 185.0 W **IEC 62782**

+ / - 1,000 Pa 1,000 Cycles 3 cycle/min at RT IEC 61215:2008 10.11 Thermal Cycling Test -40 / 85 °C 200 Cycles w/ Current (Ipm, at > 25 °C) 10

Asymmetric Dark Area along bus-bar in EL Image "No Cell Crack" was inspected by Laser Imaging

DML-TC Sequential Test

Laser Scanning Crack Detection

NPC Incorporated : "Module Laser Inspection Machine (NLS-M)"

- Laser scanning (narrow spot) with optimized bias current
 - -> Reconstitution of Jsc Image
- SEMI PV Group (JP): Proposed a Standard as "Cell Crack Inspection Method'

DML-TC Sequential Test

Laser Scanning Crack Detection

Cell Crack

- EL: Pseudo-Negative (Not Clear in Dark Area)
- LS: Positive (Clear)

EL Image

Laser Scanning

Cell Crack

- **EL:** Pseudo-Positive
- LS: Negative

Changes of I-V Parameters after DML/TC Testing εδΩες

Changes of I-V Parameters after DML/TC Testing εδΩες

DML-TC Sequential Test (EL Images) : Module A ESOEC

Initial

after DML

and a state of	Constantial Constantial				2	1211	party de la sela
	and the second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1639.201.50	1.1.2	1946		the state
Can 1	18 1. 1 1 W	1.0023	网络结合花	1. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	man	K. 155.	P 20183
tor .	和学校之后	Conta de la	1.00	and the second	Sector Sec. A	he fathant	197 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
and the second	and the second second	A. A.	The fait	1 miles	1 - 1 - F	15-1-	J. SIG
A STA	to where	19613	1 4	N. L.	Chines 1	1775	7 77 1
5.5.35		201 1	a ser and	TT,	A	CEL CONT	T
T. 29		-	All Contraction	REF	and and	11.1.1	To atto
Constant of		the second	1. 24%	T. T. T.	0 4200 A	.(. v.).	Star Fare
S. Tay Toris	THE	AL HELL	Tak of the	THE PARTY	T. C. S. S.	a la sana	1.
1		North State			C. Copies N	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	11 1 2 1		and the second	an transfer	2 Main	to the second	11 13
and the second	Martin Street	1. 1. 1.	Sector Sec	man The Real	ASSESS	10 11	the star
1		1				7	14. 10 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -
N.	· · ·	"M	entre la	(TT	an part	a phane
	1. S.	Sale A Start of	2.20	The state of the second	A CONTRACTOR STATE	A. Maletter and	2010-22
1.10.10	No. and a	Fre Part	114 - 6 1 m	17. P. 17	a la sta	and the second	E and
		Property and	in the	and the sea	TO MAKE	45 6	
Second Second	April and	the state of	The second second	10 A 10	AN SOUTH	With Presidently	A Share and

<u>The multiplication of asymmetrical dark</u> <u>area along bus-bar was not observed</u> in the modules after DML & TC.

After DML & TC, the cell crack was observed in EL image.

after DML + TC

DML-TC Sequential Test (EL Images) : Module A (A-3 Module)

Initial

after DML

<u>The multiplication of asymmetrical dark</u> <u>area along bus-bar</u> was not observed in the modules after DML & TC.

after DML + TC

DML-TC Sequential Test (EL Images) : Module B (B-2 Module) ξSΩξ(

Initial

after DML + TC

after DML

<u>The multiplication of asymmetrical dark</u> <u>area along bus-bar was not observed</u> in the modules after DML & TC.

DML-TC Sequential Test (EL Images) : Module B (B-3 Module) ESOEC

after DML

after DML +TC

after DML + TC

Cracked Cell Number

Modu	le	Initial	after DML	*after TC
	Reference	0	1	
Type A	A-1	0	3	
	A-3	1	3	
	Reference	1	8	
Type B	B-2	4	4	
	B-3	4	5	

* Under the inspection, now

Summary

1. Extended TC

- Massive survey of commercial PV modules is carrying out.
- As of now, the drastic failures (> 5% power-loss) have not been observed in almost PV modules at TC 600 cycles.
- Even in TC 600, the asymmetrical dark area along bus-bar is not detected in EL images.
- 2. DML-TC Sequential Test

Step 1: DML

- The changes of I-V parameters is relatively-little.
- The asymmetrical dark area along bus-bar did not appeared in EL.
- A little cells are cracked by DML defined in IEC 62782.

Step 2: DML + TC

- Power-loss (ca. 1%) was observed in each type of module with the reduction of FF.
- The asymmetrical dark area along bus-bar appeared in EL images (1 module / 4 modules).
- For the cell cracks, the inspection is carrying out now.

Conclusion

DML-TC Sequential Test

- For the availability of DML-TC sequential test, it has not

been determined by our experiments.

- The optimization of DML condition may be needed to establish the effective DML-TC sequential test.
- However, we found that the asymmetrical dark area along bus-bar appeared in EL image, by the combination of DML with TC, under the condition that the cell cracks were not practically induced.

This phenomenon may related to the ribbon / solderbond failures in c-Si PV modules.

 To establish the new test procedures for the comparative rating standard (Part 2), we would like to optimize the DML conditions, in collaboration with global Task Force 2 24

National Institute of Advanced Industrial Science and Technology Tetsuo Fukuda and Masaaki Yamamichi

Japan Electrical Safety & Environment Technology Laboratories Hiroshi Kato, Yoshikuni Asano, Kohji Masuda, Yasunori Uchida, and Katsuaki Shibata

NPC Incorporated Shin Watanabe, Shinji Miyoshi, Seiji Yoshino, Teiji Morita, and Masayuki Oouchi

ESPEC CORP.

Manabu Okamoto and Tadanori Tanahashi

Thank you for your attention.

If you have any question, please contact us. mailto : t-tanahashi@espec.co.jp