
BTO Program Peer Review

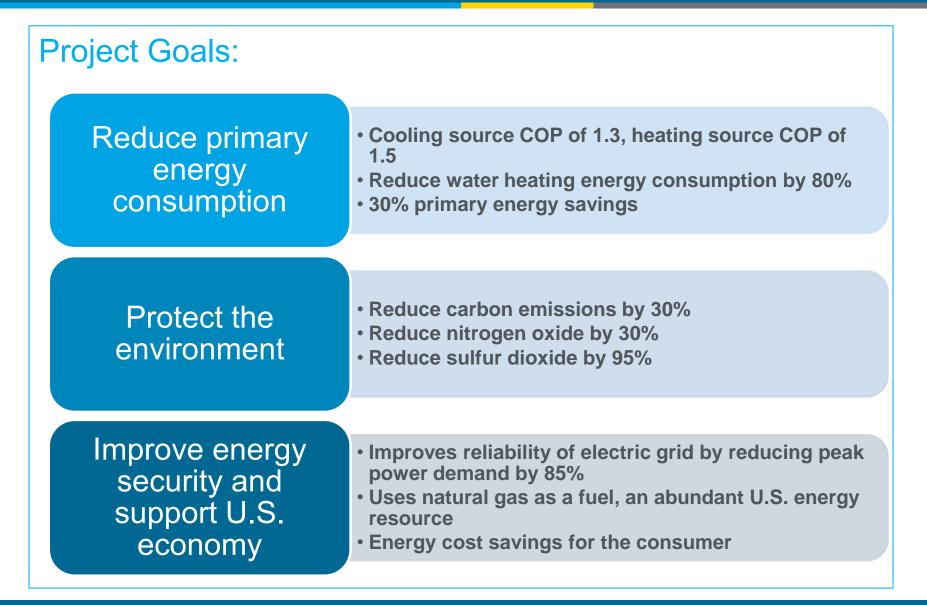
Multi-Function Fuel-Fired Heat Pump CRADA

Ed Vineyard

Oak Ridge National Laboratory, Building Equipment Research vineyardea@ornl.gov, 865-576-0576 April 2, 2013 Problem Statement: 55% residential building energy use for space conditioning & water heating; highly efficient systems needed to facilitate DOE/BTO goal for 50% reduction in building energy use by 2030

Impact of Project: Cumulative energy savings potential of 0.25 Quads per year based on a penetration rate of 10% for a residential multifunction heat pump that provides space conditioning, water heating, and power generation compared to separate HVAC and water heating equipment at minimum efficiency levels

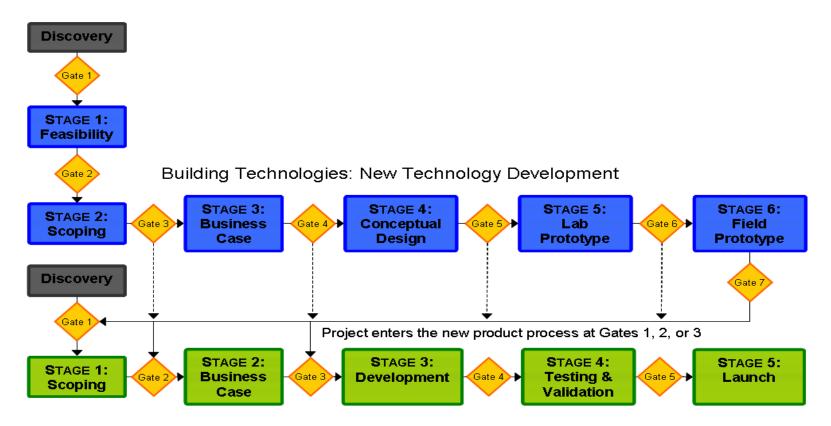
Project Focus: Supports/facilitates achievement of DOE/BTO goal of 50% reduction in building energy use by 2030; Develops and promotes market introduction of a residential fuel fired multifunction heat pump to help achieve the 20% HVAC and 60% water heating energy savings required to meet the Uber goal


Approach:

 Building on success of commercial heat pump, develop residential unit with additional features (water heating, power generation)

Distinctive Characteristics:

- Natural gas engine-driven compressor
- 1.5 kW power generation
- Waste heat recovery for space heating/water heating
- Smart controller to achieve optimal efficiency



Energy Efficiency & ENERGY Renewable Energy

U.S. DEPARTMENT OF

Stage-Gate process is used to reduce risk

Private Sector: New Product Development

- Key Issues: Cost (\$8000 target), overall size, optimal control of space conditioning, water heating, and power generation, and selection/development of power generation module
- Increase current (PLC) system controller capabilities to reduce engine and system controls and reduce costs \$1500 \$150

Low cost commercially available open source control board with 54 digital I/O points, 16 analog inputs

Reduce components and decrease maintenance intervals

Direct coupling the engine/compressor assembly eliminated pulley and belt

Replace multiple mixing valve with simpler valve and circuiting

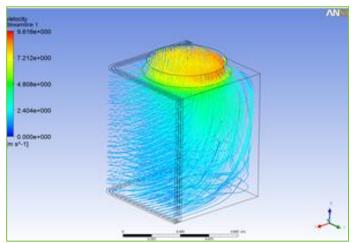
ENERGY Energy Efficiency & Renewable Energy

Key Issues: (cont.)

- Reduce unit cost by replacing specialty items with "off the shelf" components (heat exchangers, fan blades, valves)
- Reduce unit size and cost by replacing specially manufactured copper fin and tube heat exchangers with micro-channel heat exchangers

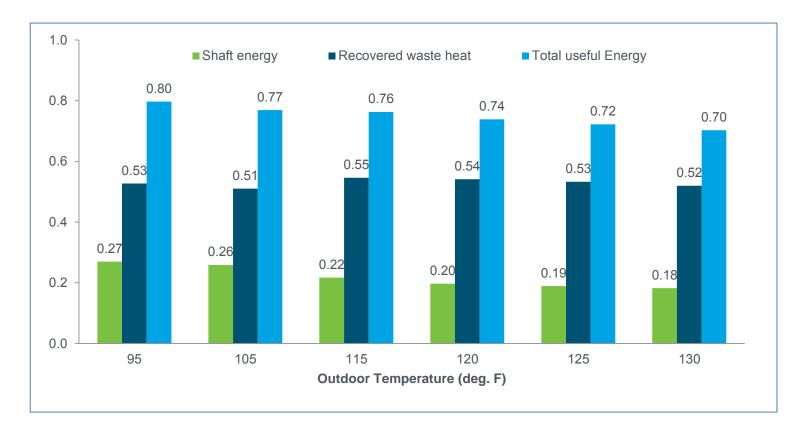
- Replace existing 1 hp outdoor fan motor with ¼ hp fan motor; enabled by micro-channel coil w/ lower pressure drop
- Determine control strategy to optimize waste energy stream utilization between water heating load and space heating load
- Reduce power draw from fans, pumps, and controllers (1200w to 600w)

Energy Efficiency & Renewable Energy


- Completed the design and development of alpha prototype
 - Selection of small, long life engine
 - CFD modeling of heat exchangers, flow paths
 - Water heating (heat recovery from engine)

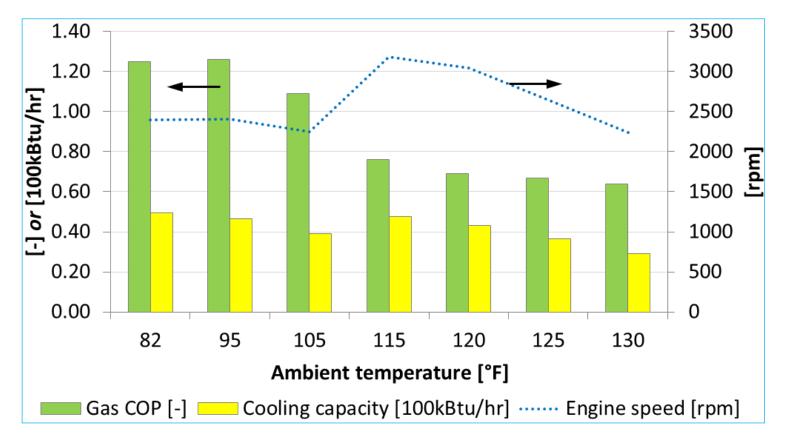
Control panel

IC engine – Marathon (U.S. manufacturer)



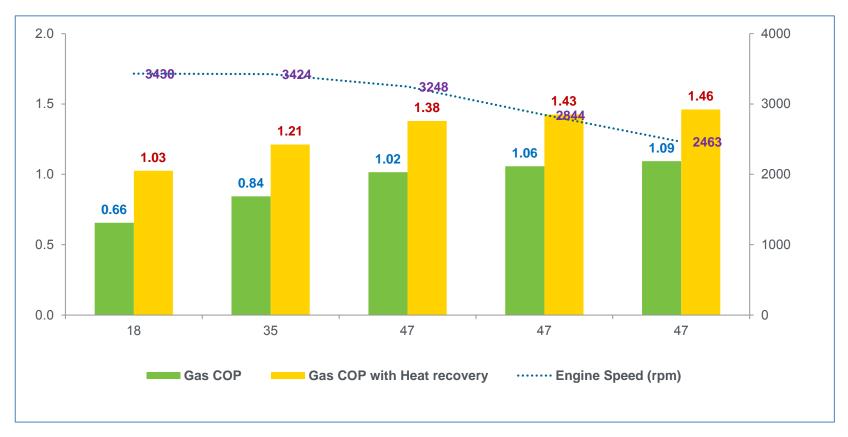
Open drive scroll compressor

Heat recovery

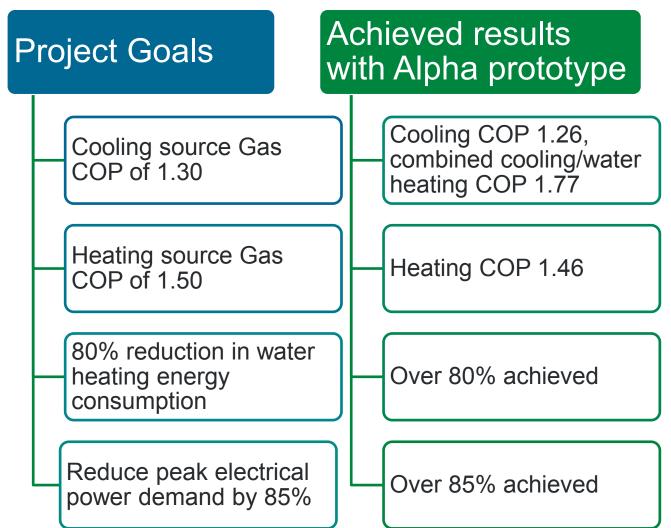


Completed performance testing of the alpha prototype

Fraction of fuel input converted to useful energy


- U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy
- Completed cooling performance testing of the alpha prototype

Cooling COP and Capacity as a function of ambient temperature


Completed heating performance testing of the alpha prototype

Heating COP as a function of ambient temperature

Progress on Goals:

Project Plan & Schedule

Original initiation date: September 1, 2010

Planned completion date: September 30, 2014

Project on schedule to meet FY13 project milestones

Go/No-Go decision plans 12/2011-proceed to full scale unit; **passed** 11/2013-proceed to field testing

Summary						Legend						
WBS Number or Agreement Number							Work completed					
ect Number 18810				Active Task								
Agreement Number 6800						Milestones & De			eliverables (Original Plan)			
					Milestones & Deliverables (Actual)			1)				
		FY2	012			FY2013 FY2014						
Task / Event	Q1	Q 2	Q3	Q4	Q1	Q 2	Q3	Q4	Q1	Q 2	Q3	Q4
Project Name: Multi-Function Fuel-Fired Heat Pump												
Milestone: Complete breadboard unit testing												
Milestone: Complete alpha unit design			\blacklozenge									
Milestone: Complete alpha unit testing												
Current work and future research												
Milestone: Develop control strategy and controller												
Milestone: Complete beta unit testing												
Milestone: Develop power generation module												
Milestone: Complete lab tests of Beta unit with power generation module												
Milestone: Perform design review with CRADA partner and build field test units												
Milestone: Develop field test plan and instrumentation package												
Milestone: Install units in field and complete testing												

Project Budget: Total - \$2000k (DOE) Partner (SWGAS) Budget - \$2400k Variances: None Cost to Date: \$1453k Additional Funding: FY14 - \$800k

Budget History								
FY2011		FY2	2012	FY2013				
DOE	Cost- share	DOE	Cost- share	DOE	Cost- share			
\$500k	\$600k	\$600k	\$600k	\$900k	\$600k			

Partners and Collaborators:

- Southwest Gas (CRADA partner), natural gas service provider in Nevada, California and Arizona
- IntelliChoice Energy, subsidiary of Southwest Gas
- Marathon Engine Systems (MES), manufacturer of the IC engine

Communications:

Conference paper and presentation: Mahderekal, I, Shen, B., Vineyard E. A., (2013), "Development of Fuel Fired Multi-function Heat Pump", Conference CD of ASHRAE 2013 Winter Conference, Dallas, TX.

Next Steps and Future Plans:

- Incorporate a power generation feature on the Beta unit
- Complete development of Beta version including control strategy
 - space conditioning
 - water heating
 - 1.5kw power generation
- Perform laboratory tests using AHRI and ANSI performance testing and rating of gas-fired heat pumps
- Develop field test plan, install units, and complete field test
- Work with partner to commercialize multi-function fuelfired heat pump