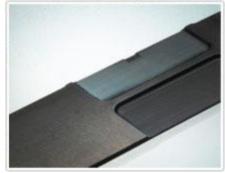
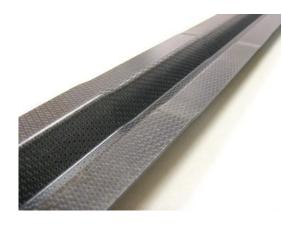


Joining of Advanced Thermoplastics

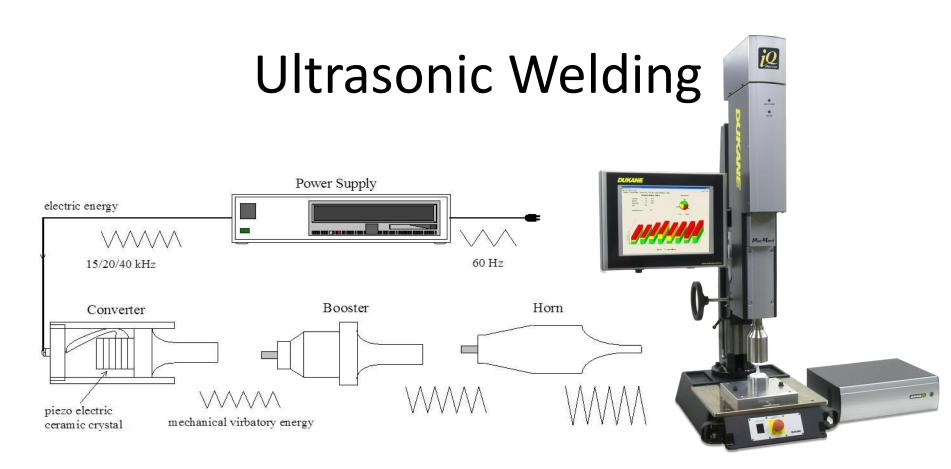
July 23, 2012


Ed Herderick, PhD Applications Engineer Materials Group EWI 614.688.5111 eherderick@ewi.org George Ritter, PhD Principal Engineer


Sean Flowers Ultrasonics Group

Thermoplastic Composites: Outline

- Lighter than metals, tougher than thermosets, can be welded and recycled
- Examples of joining approaches
- Bio-based composites
- Nano-reinforced composites
- High temperature thermoplastics


Joining of Engineering Thermoplastics

MATERIAL	WELD ZONE (°C)
 Polyether-ether ketone (PEEK) 	380-400
 Polyphenylene sulfide (PPS) 	220-280
 Polyetherimide (PEI) 	250-280
 Polethersulfone (PES) 	200-250
 Polyamides (PA) 	250
 Polyesters (PET, PBT) 	150-180

0-60

Reinforcement levels can be

volume percent.

- Power Supply: Converts standard AC power to 15- to 40-kHz
- Converter/Transducer: Converts electrical energy from power supply into high frequency vibrations by the cyclic expansion of piezoelectic ceramic elements
- Booster: The vibration produced by the piezoelectric transducer is transmitted to the horn through the booster
- Horn/Sonotrode: Transmits the linear vibrations to the workpiece

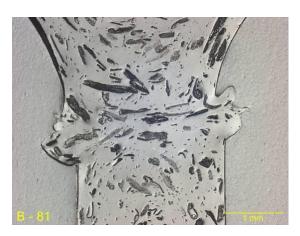
Ultrasonic Welding

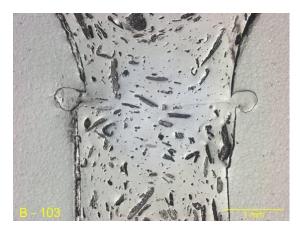
Advantages

- Very fast process
- Advanced, modern equipment with sophisticated control and monitoring features
- Ideal for small to medium size parts
- Versatility
- Can be automated
- No foreign material required at interface

Disadvantages

- Requires specific joint designs
- Overall sensitive process
- Some geometry and material limitations
- Requires tight dimensional tolerances of molded parts
- Ultrasonic horn must be tuned
- Known to damage internal


Introduction - Biocomposites


- Biocomposites
 - Formed by the addition of natural, reinforcement fibers to a traditional or bio-based resin
 - Biodegradability is dependent on the matrix material and filler materials
- Natural fibers
 - Commonly derived from plants
 - Examples: flax, hemp, switch grass, wheat straw, and wood fibers

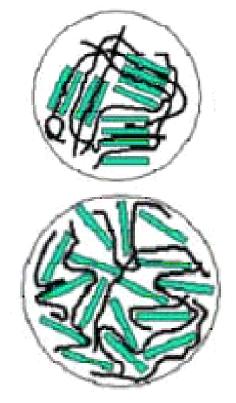
Wheat Straw Biocomposites

- Wheat straw-reinforced PP: Better mechanical properties compared to other natural fibers
 - Weight savings of approximately 10 percent
 - Increased dimensional stability
 - Less energy used in manufacturing due to lower machine temperatures
 - Lower carbon footprint produces 1.30 kilograms less of carbon dioxide per kilogram of product based on Ford's analysis
- AgriPlas[™] BF20H-31
 - 20% wheat straw fiber-filled PP biocomposite
 - Used in the Ford Flex 3rd row bin and lid

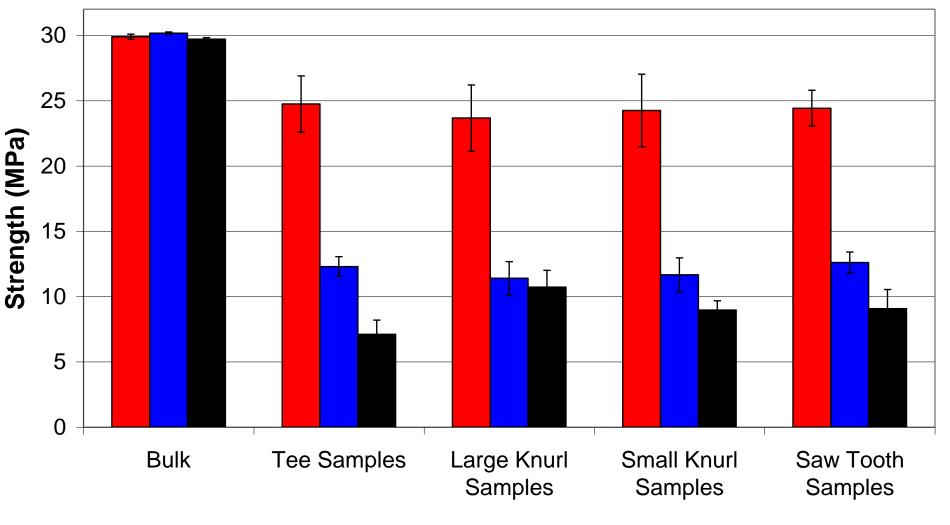
Nanoclay Composites

- Advantages
 - With little increase in density, many properties can be improved:
 - decreased permeability to vapors such as gasoline
 - higher thermal stability and can be flame retardant
 - greater tensile strength and modulus
 - less expensive than co-polymers
- Disadvantages:
 - lower toughness
 - poor weld strength!!!
- Applications:
 - Medical Equipment
 - Battery Jars
 - Food & Beverage Storage
 - Fuel Tanks

Nanoclay Composites


•Polymer matrix systems in which nanosized clay reinforcing phase particles are dispersed in the matrix

•At least one dimension is in the nanometer range


- Two typical achievable microstructures:
 - intercalated nanocomposite
 - Polymer resin in-between the layers of clay platelets
 - Their stacking order is retained
 - Not as desirable for strength applications
 - exfoliated nanocomposite
 - Clay layers are individually dispersed in the host polymer matrix
 - As the extent of exfoliation increases, more clay particle surface area comes into contact with polymer resin

National Research Council Canada: http://www.nrc-cnrc.gc.ca/highlights/2003/0307nanocomp_f.html

Polymer

Example of varying joint design

■ 0wt% Samples ■ 3wt% Samples ■ 6wt% Samples

High T Thermoplastic Composites

PPS – glass fabric composite fixed wing leading edge --- on Airbus A340 and A380

Carbon Fiber re-inforced PEEK for aircraft wing

induction welded with PEEK resin as bonding agent

Thermoplastic Composites Summary

• A wide variety of bio, nano, and high temperature thermoplastic composites commercially available

- Opportunities for lightweighting and enhancing environmental sustainability
- In order to realize full potential, advanced joining processes are essential