Combined Heat and Power Research and Development

FWP Number: CEED210, Project 19864, Agreement 19128 Oak Ridge National Laboratory Project Period: Sept 2008 – Sept 2011

> <u>K. Dean Edwards</u>, Tim J. Theiss, Jim C. Conklin, Mike D. Kass, Brian C. Kaul Oak Ridge National Laboratory edwardskd@ornl.gov, 865-946-1213

U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011

Executive Summary

Comprehensive program addresses improved efficiency and optimization of CHP systems and components as well as expanded use of opportunity fuels

Combined Heat & Power Activities

- Develop a state-of-the-art, large-bore, single-cylinder engine research facility
- Thermodynamic evaluation of recip- and turbine-based CHP engines and systems
- Advanced combustion studies
- Examine potential of advanced concepts such as closed Brayton cycle and super-critical CO₂ systems
- Develop and evaluate advanced materials for engine valves and turbines

• Fuel Flexibility: Contaminant (Siloxane) Mitigation

- Examine silica formation kinetics and characterize deposits
- Development of a novel siloxane separation technique
- Evaluation of low-cost siloxane sensor (with University of Tennessee)

Project objectives

- Improve the efficiency and utility of CHP systems
 - Develop tools and methods for system-level design and optimization of CHP systems
 - Develop and evaluate strategies for real-time management of power-to-heat ratio to meet changing demands
 - Identify and assess opportunities to improve component efficiencies
 - Thermodynamic analysis of engine data and CHP system modeling
 - Control to improve stability of lean-limit combustion and advanced combustion modes
 - Improved durability of high-temperature valve and turbine materials
 - Evaluate how those improvements impact overall system performance
 - *e.g.*, effect of low-temperature combustion strategies, improved turbo-machinery, etc on process heat production and system efficiency
 - Fuel flexibility for increased utilization of opportunity fuels
- Dissemination of gained knowledge through publications and interactions with industry

Project Management and Budget

- FY 2011 budget for ORNL's CHP tasks: \$1200k
 - FY 2011 budget for three tasks presented today: \$700k
 - Total BA received for FY 2011 to date: \$638k (of \$1200k)
- FY 2012 budget: TBD
- FY 2011 Milestones
 - Complete and publish advanced thermodynamic analysis of reciprocating engine examining areas for potential efficiency gains (Sept 2011)
 - Publish results from baseline and lean-burn studies on large-bore, single-cylinder engine (Sept 2011)
 - Publish results from valve materials study (Sept 2011)

Task 1: Establishing a large-engine research cell at ORNL

- Internal funding used to develop state-of-the-art largeengine research cell
 - 600-hp DC dynamometer
 - Dual-ended, 233-hp AC dynamometer (100 hp motoring)
 - Fuel-flexible operation: natural gas, diesel, and gasoline/ethanol
 - Cell commissioned in March 2009
- Installed 3.0-L single-cylinder research engine based on Waukesha APG1000 (Phase I ARES engine)
 - Designed and built by Digital Engines
 - Collaborated with GE Energy, Dresser Inc. on install and start-up
 - LabView[®]-based engine controls and data acquisition
 - Engine commissioned on 3 November 2010
- Provides state-of-the-art research capabilities for largebore, natural gas engines

Extensive instrumentation to support detailed thermodynamic analysis

Floor plan of large-engine research cell at ORNL

3.0-L single-cylinder engine installation

Status update on single-cylinder research engine

• Unfortunately, after 19 hrs of fired operation, the front engine bearing seized on 23 March 2011

- Failure occurred approximately 20 min into initial operation at rated speed (1800 rpm)
- Engine stopped within 7 s from 1800 rpm, overcoming 180 ft-lbf of engine torque, 200 ft-lbf of dyno torque and the inertia of a 900 lb flywheel
- GE Energy, Dresser Inc. experienced two similar failures on their sister engine
 - Same bearing failed
 - Tribology consultant attributed failure to thermal expansion mismatch between bearing carrier and crankshaft during warmup
 - We worked closely with GE Energy, Dresser Inc. during install and startup to develop pre-heating and oil-quality monitoring procedures in efforts to avoid similar failure

• We plan to repair engine, address bearing lubrication issues, and return to operation this FY

- Engine disassembly and failure analysis have begun
- Plan to consult with third-party tribologist
- Redesign of bearing and lubrication systems
- Modular design of engine should aid redesign efforts
- Engine has attracted interest from multiple companies seeking to partner with ORNL on research efforts

Front bearing seized on crankshaft

Task 2: Thermodynamic evaluation of CHP systems

- Thermodynamic analysis provides a method for evaluating performance and potential opportunities for efficiency improvement in the engine and system as a whole
 - First Law shows how fuel energy is used or lost throughout the system (common practice)
 - Second Law provides a relevant reference state to determine the actual work potential of the energy flows
- System modeling supplements experimental data and provides additional insight into processes which are difficult to observe (e.g., combustion, heat transfer, etc)

Example of typical energy usage for an IC engine

2nd Law: Fuel exergy usage

<u>Working Definition</u>: **Exergy** (a.k.a. availability) is a measure of a system's potential to do useful work due to physical (P, T, etc.) and chemical differences between the system and the ambient environment.

Thermodynamic analysis of IC engine data

Thermodynamic analysis of engine data provides insight to fuel energy usage

- Evaluate changes in energy distribution with operating strategy
- Locate and quantify opportunities for efficiency improvement
- Substantial detail can be obtained with standard measurements and a few assumptions
 - Brake torque, temperatures, pressures (including in-cyl), air and fuel rates, exhaust composition, etc
- Working with GE Energy, Dresser Inc. on more extensive analysis of engine and model data for APG1000

Efficiency limits of IC engines

- IC engines are not limited by Carnot Efficiency
 - Theoretically, the maximum first law efficiency of an IC engine is $\eta_{
 m max}\cong 100\,\%$
- Practically, maximum efficiency is limited by a number of real-world concerns
 - Work extraction efficiency

• Irreversible losses (friction, combustion irreversibility, etc)

Material limits

- Cost
- Significant efficiency improvement will require addressing multiple loss mechanisms

Loss Mechanism	Challenges and Opportunities	Assessment
Combustion Irreversibility	 Unrestrained combustion reactions far from chemical and thermal equilibrium Requires radical changes in how combustion occurs Some opportunities related to dilution and fuel selection 	Difficult for near-term
Environmental heat loss	 Low-temperature combustion techniques Adiabatic approach increases thermal exhaust energy for better energy transfer to turbocharger and/or other WHR hardware Higher temperature operation requires improved materials and lubricants 	 Low-temperature combustion approach complicated by stability concerns and use of natural gas Adiabatic approach most effective in combination with thermal energy recovery
Friction and pumping	Improved lubricantsMore efficient valve technologies, fuel systems, etc	Opportunities for improved part-load performance
Exhaust energy	 Reductions in and/or better usage of exhaust energy requires fully expanded cycles, advanced combustion, improved turbo- machinery, and/or thermal exhaust energy recovery 	Significant opportunities in waste energy recovery

Oak Ridge National Laboratory

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Pushing the efficiency limits toward 60%

- A recent *Engine Efficiency Colloquium* organized by ORNL with participants from industry, government, and academia addressed the subject of maximum practical engine efficiency
 - "The maximum BTE expected for slider-crank engines is about 60%, assuming that cost is not a constraint."
 - "Achieving BTEs > 60% will require radical changes to present engines, including cycle compounding, new engine architectures, and more constrained combustion reactions."

– Daw , et al. (2010) ORNL Report TM-2010/265

- This would be a very aggressive, stretch goal and costly
- Large (e.g., ARES-class) engines stand a better chance of approaching this goal than smaller engines (such as transportation engines or small gen-sets)
- Will require balancing benefits (+) and drawbacks (–) of multiple approaches
 - Waste heat recovery (WHR)
 - Advanced, low-temperature combustion techniques
 - + Lower heat loss and aftertreatment fuel penalty
 - Lower WHR potential
 - May require advanced controls to limit cyclic variability
 - Advanced materials with low thermal conductivity and high durability
 - + Lower heat loss and higher WHR potential
 - + Operation at higher cylinder pressures (increased piston work)
 - Increased potential for knock and NOx production
 - Improved turbo-machinery efficiency
 - + Higher boost (especially at part load)
 - + Turbo-compounding
 - Variable valve actuation for reduced pumping losses at part load
 - Dual-fuel combustion strategies?
 - Fuel reforming (to H₂ and CO) using exhaust heat (thermochemical recuperation)?

Oak Ridge National Laboratory

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Modeling and analysis of recip- and turbine-based CHP systems

- Models developed for state-of-the-art CHP systems using Aspen Plus[®] and GT-Suite[®]
- Evaluate combined system performance and assess opportunities for further optimization
- Evaluate strategies for managing power-to-heat ratio to meet demand
- Assess impact of strategies to improve power efficiency and/or reduce emissions on overall system performance and process heat production, for example...
 - High-dilution (lean or high EGR) combustion strategies
 - Improved turbo-machinery performance for high-boost IC engines
 - Advanced materials for reduced heat loss
 - etc

Turbine-based CHP system modeling using Aspen Plus®

Reciprocating-engine-based CHP system modeling using GT-Suite®

Modeling example for reciprocating-engine-based system

- System consists of a state-of-the-art, light-duty diesel engine coupled with an organic Rankine cycle (ORC) for waste heat recovery for additional power
- Evaluated impact of engine efficiency improvement strategies on overall system performance
- Advanced materials to reduce heat loss
 - Limited increase in engine power
 - Significant increase in engine exhaust temperature
 - Lower combustion irreversibility
 - <u>1.2% point increase in system performance</u>
- Turbo-compounding
 - ORC compensates by further lowering system exhaust temperature
 - <u>1% point increase in system performance</u>
- Combined approach
 - <u>~2% point increase in system performance</u>
- Full results published
 - ASME ICEF2010-35120
 - SAE 2010-01-2209

Exergy distribution for small diesel engine at peak efficiency with Rankine bottoming cycle for waste heat recovery

Total Irreversibility Engine 91.897 kW, 54% Heat Loss Fuel Exerav 33.354 kW, 19.6% 169.793 kW Losses Friction 2.840 kW, 1.7% Combustion Irreversibility rsible and in -cylinder losses 49.047 kW. 28.9% Other Losses 0.883 kW. 0.5% ORC Irreversibility 5.773 kW. 3.5% Engine Exhaust 14.581 kW, 8.6% ORC **ORC Net Work** 5.024 kW, 3.0% System Exhaust 3.785 kW, 2.3%

Net change in exergy distribution with efficiency improvement strategies

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

OAK RIDGE NATIONAL LABORATORY

Turbine-based CHP system modeling and analysis

- Aspen Plus used to model a state-of-the-art turbinebased CHP system for power and steam generation
 - Evaluate opportunities for further optimizing system performance and power-to-heat ratio
 - Assess impact of power efficiency improvements on system performance
- System based on a Solar Mercury™ 50 gas turbine
 - State-of-the-art natural gas turbine system
 - Output: 4.6 MWe
 - Recuperated
 - 10-stage variable-vane compressor, 9.9:1 compression ratio
 - 2-stage reaction turbine
 - Ultra-lean-premix combustion
- ORNL is also working with Solar Turbines on development of advanced turbine materials

Solar Mercury™ 50 turbine-based CHP installation

Images courtesy of Solar Turbines

OAK RIDGE NATIONAL LABORATORY

Example results show effect of equivalence ratio on efficiency

- Turbine-based CHP model recently completed
- Studies underway to assess impacts on system operation and evaluate opportunities for improvement
- Sample results presented here show impact of small changes in turbine equivalence ratio
 - Increasing fueling increases power and overall system efficiency
 - Combustion irreversibility decreases with lower dilution – ~18.3 % at stoichiometry for natural gas
 - Ultra-lean operation desired to meet emissions regulations and limit turbine inlet temperature
 - Estimate potential efficiency
 improvement with advanced materials
 - Does efficiency benefits of less-lean operation outweigh burden of adding aftertreatment?
- Additional studies underway (effects of pressure ratio, recuperator effectiveness, etc)

Model results showing equivalence ratio effects on exergy distribution for turbine-based CHP system

Task 3: Advanced combustion studies

Plans for this task involve ...

- Exploring the stability limits of the single-cylinder engine during lean and advanced combustion operation
- Evaluating the potential to increase stability through intelligent control
- ORNL has extensive experience in characterizing and controlling complex, unstable combustion processes to achieve efficiency and emissions reductions benefits
 - Extending operation near stability limits
 - Transition and stabilization of low-temperature combustion modes
 - Avoiding misfire and abnormal combustion events

- We are adapting plans for the remainder of FY2011 while the single-cylinder engine is repaired
 - One option is evaluation a novel modeling strategy that builds on our existing understanding and ability to predict high-dilution combustion performance

Summary and Future Work

Comprehensive program has been established and is addressing challenges of improving component- and system-level performance of future CHP systems

- State-of-the-art, single-cylinder research engine installed and commissioned at ORNL
 - Engine suffered a bearing seizure
 - Failure assessment and redesign and repair efforts are underway
 - Goal is to return to operation this FY
- Thermodynamic evaluations are providing insight to efficiency opportunities on a component and system level
 - Presented assessment of practical IC engine efficiency limits
 - Evaluating IC engine data for efficiency opportunities
 - Continuing to exercise CHP system models
- Combustion studies on the single-cylinder engine will resume following engine repairs
 - Shifting focus to proposed modeling study for remainder of FY 2011

Questions?

Contact Information

- K. Dean Edwards edwardskd@ornl.gov, 865-946-1213
- Tim J. Theiss Group Leader, Fuels and Engines Research Group theisstj@ornl.gov, 865-946-1348
- Robert M. Wagner
 Interim Director, Fuels, Engines, and Emissions Research Center
 wagnerrm@ornl.gov, 865-946-1239

