

Nuclear Energy Enabling Technologies (NEET)

Advanced Sensors and Instrumentation (ASI) Annual Project Review

Recalibration Methodology for Transmitters and Instrumentation Pradeep Ramuhalli Pacific Northwest National Laboratory

May 21-22, 2013

Project Overview

Nuclear Energy

Goal: Develop and evaluate a standardized framework for nextgeneration online monitoring applicable to current and future nuclear systems

■ Participants:

- PNNL (Pradeep Ramuhalli, Jamie Coble, Guang Lin, Brett Braatz)
- AMS (Brent Shumaker)

Research directly supports primary goals of

• LWRS, SMR, ARC, NGNP, and MPACT

Supports secondary goals of

• AF and UNFD

Project Background

Nuclear Energy

Measurement reliability key to safe, economic and secure operation of nuclear systems

• Interval-based recalibration used to assure reliability

Current practices have several drawbacks

- Time consuming and expensive
- Sensor calibration assessed infrequently
- Contributes to ALARA
- Unnecessary maintenance may damage healthy sensors

Open questions

- Temporarily accommodate limited sensor failure
- Ensure reliability of next generation sensors and instrumentation
- Robust methods for uncertainty quantification (UQ)

Technology Impact

Nuclear Energy

Standardized framework for next generation Online Monitoring (OLM) that supports

- Dynamic and steady-state operation
- Real-time calibration assessment and signal validation
- Considerations for emerging I&C technologies
- Four-year project addresses cross-cutting areas
 - Uncertainty quantification
 - Virtual sensors
 - OLM requirements for next-generation I&C

Research Plan

Nuclear Energy

OLM Requirements and Technical Gaps assessment (FY12)

Quantifying uncertainty in OLM results (FY13)

• Develop a model-neutral mathematical framework for estimating uncertainty in OLM under normal and anomalous plant operation conditions

Establishing methods for virtual sensors and signal validation (FY14)

- Evaluate how uncertainty drives minimum detection limits
- Estimate expected measurement values (and associated uncertainties) for replacing faulted sensors
- Evaluate the effect of using virtual sensors on OLM and OLM uncertainty
- Develop guidelines for condition-based sensor recalibration

Assess impacts of next generation sensors and instrumentation (FY15)

Evaluate effect of proposed next generation I&C systems on OLM

Transition to demonstration in a suitable test-bed or operating plant (FY15/FY16)

Budget

FY12	FY13	FY14	FY15	FY16
225K	304K	310K	500K	500K

Technical Approach: Online Monitoring Overview

Nuclear Energy

Technical Approach: Uncertainty Quantification

Nuclear Energy

Several possible approaches to UQ

- Deterministic sampling approaches
- Stochastic approaches
- Generalized linear model, Multivariate adaptive regression splines model
- Multi-output Gaussian process model, polynomial chaos model

Evaluating approaches to determine appropriate UQ methodology

- Bayesian model selection (Bayesian LASSO, Bayesian Elastic net, etc.)
- Cross-validation approaches
- Evaluation based on information criteria (Akaike information criteria (AIC), Bayesian information criteria (BIC), etc.)

Validation of UQ methodology using simulated and experimental data

- Bayesian model calibration
- Cross-validation approaches
- Validation based on Mean Squared Prediction Error (MSPE)

Nuclear Energy

Data from Simulations and Testbeds to Evaluate UQ Methodology

- Simple heat exchanger loop
- Sensor and instrumentation models coupled to loop model
- Prescribed uncertainty levels to directly study effects on sensed values and OLM results
 - Normal and anomalous conditions

FY 12 Accomplishments

Nuclear Energy

Reviewed state of the art in OLM for sensor calibration assessment and identified technical gaps (PNNL-21687)

- Standardized approach to uncertainty quantification
- Method to establish acceptance criteria and evaluate the effects of acceptance criteria on plant setpoints
- Method to provide virtual sensor estimates for unavailable measurements
- Evaluation of the effects of digital I&C, wireless communication, and emerging sensor types on OLM

Development of initial research plan to address gaps

- Technical development to address gaps in FY13 FY15
- Demonstration in FY16

Journal/Conference papers

- "Extending Sensor Calibration Intervals in Nuclear Power Plants," 2012 ANS Winter meeting
- "Calibration Monitoring for Sensor Calibration Interval Extension: Identifying Technical Gaps," 2012 Future of Instrumentation International Workshop

FY 13 Activities

Nuclear Energy

Development of preliminary framework for uncertainty quantification

Comparison to current practices

Evaluation of UQ framework with simulated and experimental data

- Nominal operation
- Anomalous operation (sensor faults and process faults)

Journal/Conference Papers

- "Online Sensor Calibration Assessment in Nuclear Power Systems," Invited paper, IEEE I&M Magazine (to be published June 2013)
- Planned presentation at ANS Utility Working Conference (August 2013) (Title TBD)

Technical Approach: Signal Validation & Emerging I&C

Nuclear Energy

- Proposed OLM programs require periodic recalibration of a limited set of sensors
- Signal validation could potentially alleviate that requirement with high-confidence assessment of sensor status
 - Accurate uncertainty quantification
 - Combining disparate information sources
- Signal validation approaches can also be used as a preprocessing step before advanced monitoring and control algorithms to ensure decisions are based on quality data
- OLM requirements using emerging I&C technologies unknown

Technical Approach: Virtual Sensors

Nuclear Energy

- OLM estimates can replace faulty sensor measurements
 - Uncertainty must account for spillover of faulty reading into estimate

Measurements can be combined to provide additional signatures that aren't currently measureable

Planned Accomplishments

Nuclear Energy

■ FY14

- Virtual sensors: Robust algorithms for estimating derived values for parameters that cannot be directly measured
- Data integration methods for high-confidence signal validation

■ FY15

- Integrate UQ methods with virtual sensors and signal validation approaches
- Methods to quantify effects of new sensing approaches and digital I&C on OLM

■ FY16

 Demonstration in a lab-scale system or secondary system at an NPP partner site

Crosscutting Benefits

Nuclear Energy

- Project team interacting with cognizant experts from various DOE-NE programs to ensure broad-based input (e.g., LWRS, SMR, ARC, AF, MPACT)
- Interacting with industry experts to leverage current practices in OLM and UQ
- Defined list of requirements through survey of published literature and industry practices
 - Uncertainty quantification
 - High-confidence signal validation
 - Virtual sensor estimation

Continued interactions

- Continue to engage experts in various DOE-NE programs
- Participate in program reviews to gain input and concurrence from cognizant experts

Crosscutting Benefits: LWRS, SMR, ARC, and NGNP

Nuclear Energy

Unobtrusive assessment of sensor calibration

- Relaxation of interval-based recalibration requirements in favor of condition-based recalibration – reduced or eliminated unnecessary maintenance
- Ensures performance of proposed sensors
- Supports longer operational cycles, reduced maintenance requirements, and remote siting

Virtual sensor estimation

• Derive estimates of currently unmeasureable parameters

Potential applications in accident scenarios and transients

- Assess sensor measurement accuracy during accidents and transients
- Provide necessary confidence in measurements during accidents using the virtual sensor concept

Signal validation as essential data preprocessing step for supervisory control and advanced health monitoring systems

Crosscutting Benefits: AF, MPACT, UNFD

Nuclear Energy

Sensor reliability assessment for new sensor technologies

- Ultrasonic sensors
- Fiber optic sensors
- Operation in harsh environments

Real-time validation of large data streams for process monitoring in fuel reprocessing plants

- Differentiating between sensor/detector faults and process changes
- Potential application to monitoring performance of sensors in long-term used fuel storage facilities
 - Applicability can be evaluated as sensor suites are designed and developed

Transition to Competitive Research

Nuclear Energy

Anticipated outcome for FY13

- Preliminary framework for uncertainty quantification
 - Model-neutral approach
 - Estimate uncertainty sources directly from data

Research areas for FY14-16

- Methodology for providing virtual sensor estimates and high-confidence signal validation
 - Integrate with UQ methodology
- Evaluation of the effects of emerging sensors, digital instrumentation, and wireless transmission
- Demonstration in an appropriate test-bed or facility will be necessary to ensure outcomes are tangible

Conclusion

Nuclear Energy

Research focused on addressing high-impact technical gaps to developing a standardized framework for next-generation online monitoring

Outcomes enable

- Extended calibration intervals and relief of even limited periodic assessment requirements
- Assessment of sensor measurement accuracy with high confidence
- Derived values for desired parameters that cannot be directly measured

Outcomes support

- Improved reliability and economics for current and future nuclear systems
- Deployment of advanced sensors (ultrasonic, fiber optic, etc.) and instrumentation (digital I&C, wireless, etc.)