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Today’s Question

Using demand response makes sense to balance
wind uncertainty and variability, but...

...why shouldn’t wind provide self reserves?



Topics Overview

Modeling framework

Quick re-cap of the impact of using DR to
palance wind variability and uncertainty

Representing generator forced outages

Preliminary results on the use of wind “self-
reserves’




Modeling Framework

Capturing the impact of load and wind
forecasting errors on system dispatch
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Network Re-Dispatch in a
Monte Carlo Framework
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Optimizing Demand Response

* 15% of load is responsive in the ‘real-
time’ market

* Optimize use of HA (slower responding &
lower cost) demand response:

Cost Minimizing Dispatch*

Hour Ahead | 10 Min Ahead Real-Time

85% 15% 0%

*Method for determining the cost-minimizing dispatch percentages was discussed

previously, see [2]
(] o



System benefits of DRR with Wind

* Previous results have shown:

Use of multi-temporal scale DR may increase the
benefits of wind power

Parameter No DRR | Naive DRR | Optimal
DRR
LMP level & o AN s A
Production cost A - W
CO, emissions v v 4
Wind Spilled : v 47

Qualitative System Impacts with increasing wind penetration (0-30%)



Generator Forced Outages

* |n the short time-frame of the re-dispatch model,
generator outages can occur
« A forced outage sub-model is now included,
iInducing (probabilistic) random outages:
o EFOR is differentiated by generator type [1]

o Generators at each bus “dis-aggregated” to
experience individual outages

o A generator outage also impacts ramp capabilities by
reducing flexibility

[1] Applications of Probability Methods Subcommittee. (1979). IEEE Reliability Test System. Power
Apparatus and Systems, IEEE Transactions on, (6), 2047-2054. doi:10.1109/TPAS.1979.319398



Mean Time to Failure

Generator Type MTTF (hours)

Coal 2940
Hydro 1960
Natural Gas 1980
Nuclear 1104
Oil 480

Peaker 480



Network Re-Dispatch in a
Monte Carlo Framework
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Wind Self-Reserves

« To model wind providing self-reserves, the wind generators
are dispatched down from expected output

» Operational scenarios:

120 .
Possible 10-min market reahzatlons
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Preliminary Results

» Recent results available for 10% wind penetration case to
compare

o Demand response without self-reserves

o Self reserves without demand response

o Both self reserves and demand response
 Comparison of

o Aggregate dispatch by generation type (do we use
more wind overall?)

o Locational marginal price (is it economically
beneficial?)

o Wind dispatched and spilled (are we making effective
use of the resource?)



Aggregate Dispatch



Generator Dispatch:
Demand Response

Aggregated by Fuel Type

Peaking, < 126 (107.2%)
Oil, 636 (0.0%) Wind, 1226(39.2%)

Hydro, 9% [5.6%)

Coal, 726 (4.3%)

NGas, 4426 (22.5%)

Nuclear, 2126 (0.0%)



Generator Dispatch:
Self-Reserves and Demand Response

Aggregated by Fuel Type

Peaking, < 196(103.5%)
Oil, 6% (0.0%) Wind, 143 (37.4%)

Hydro, 826 (13.5%)

Coal, 726 (3.2%)
NGas, 4496 (22.3%)

MNuclear, 2125 (0.0%8)



Price Results



Locational Marginal Price:
Demand Response, no Self-Reserves
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Locational Marginal Price:
Self-Reserves, no Demand Response
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Locational Marginal Price:
Demand Response and Self-Reserves
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Wind Dispatch & Spill



Average Wind:
Dispatched and Spilled
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Results Summary

Parameter DRR* Self- DRR* with
Reserves Self-

Reserves

LMP level & o \ b N7

Production cost Ny -

CO, emissions v

Wind Spilled U

Wind Dispatched AN

*DRR is implemented using optimized fractions
Qualitative summary of impacts with wind integrated 2



Conclusions

For 10% wind penetration

 Including forced outage uncertainty has impacts on LMP
and production costs

« Use of wind resources can be improved through use of
either demand response or self-reserves

e The combination demand response with self-reserves
provides additional benefits by increasing wind utilization
and reducing required ancillary services

« Challenges of wind are increased at higher penetration,
likely the benefit of self-reserves and demand response
will be more significant (results TBD)




