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Need for New Tools 

Driven by … 

• variability 

– large changes from one period to the next means 
you need look-ahead planning (e.g. for ramping) 

• uncertainty 

– must plan for range of realizations (e.g. wind) 

• storage and flexible demand 

• environmental policy 

4 



Unifying Themes 

• simultaneous, explicit modeling of multiple 
states 

– each state has full set of OPF vars, constraints, 
costs 

• stochastic or weighted cost 

• additional variables, constraints and costs that 
tie these states together 
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Progress on Underlying Tools 

• MATPOWER 

– used worldwide in teaching, research and more 

– v4.1 released in 2012, v4 over 25,000 downloads 

• SuperOPF Planning Tool 

– used by Project 2E: Mapping Energy Futures: 
SuperOPF Planning Tool (Bill Schulze) 

• 2nd gen (multiperiod) SuperOPF 

– used by Project 2A: Evaluating Effects of Managing 
Controllable Demand & DER (Tim Mount) 
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MATOWER 

v4.1 & recent dev versions, added support for: 

– more high performance solvers 

• Knitro, Gurobi, CPLEX 12.4 

– dispatchable DC lines 

– systems with islands 

• new tools for detection and manipulation, running PFs 

– generalized software object used to build and 
manage optimization models 

– uniform interface for solving MILP/MIQP problems 

• foundation for UC in 3rd gen SuperOPF 
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SuperOPF Planning Tool 

• 1st gen (single-period) SuperOPF 

– minor bug fixes 

– reduced number of constraints by reformulating 
some 

• Planning Tool 

– added build limits by type/region 

– solving model of Eastern Interconnect 

• 5222 buses 

• 2882 gens 

• 14225 branches 
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Multiperiod SuperOPF 
2nd gen SuperOPF 

• bug fixes, code cleanup, performance tuning 

• reduced number of constraints by reformulating some 

• internal rewrite to use new optimization model object 

• improvements to price coordination used in AC version 
– new adaptive strategies for some parameters 

• improved modeling of the residual value of stored energy in 
terminal states 
– driven by results from Mount’s project 

– several iterations of design, latest needs more testing 

– turns out to have significant impact 
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Focus for 3rd gen SuperOPF 

Choosing to focus on aspects of problem that 
can be explored with DC network model: 

(AC problem is HARD, but not unimportant) 

• benchmarking stochastic framework 

• adding UC to solver 

• getting the simulation environment right 

– with uncertainty, receding horizon is crucial 
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Benchmarking Stochastic 
Framework 

Benchmarking SuperOPF tools requires creating 
“current practice” tools to compare against: 

– any comparison involves some apples vs. oranges, 
outcomes sensitive to assumptions, no other 
choice 

• Previous comparisons 

– single-period SuperOPF vs. OPF with fixed zonal 
reserve 

• uncertainty driven by low probability contingencies 
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Designing New Benchmark Tests 

• New comparisons 

– multi-period SuperOPF vs. multi-period OPF wth 
fixed zonal reserve 

• uncertainty driven by wind 

• Significant effort has gone into designing new 
testing scenarios: 

– 118-bus case 

– realistic wind inputs, load profiles 

– contingencies 
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Add Unit Commitment to Solver 

• new MILP/MIQP interface code in MATPOWER 
lays foundation 

• straightforward addition of commitment 
variables, min up/down-time constraints, 
startup/shutdown costs 

• FERC has recently made available new UC test 
case 
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Design of Receding Horizon 
Framework 

Carlos E. Murillo-Sánchez 
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• AC Multi-Period SuperOPF:  improvements on speed, 
but still not usable for general users.  Not a “shake and 
bake” tool; needs careful tuning.  But 10x 
improvements have been obtained for systems such as 
the IEEE 118 bus. 

• DC Multi-period SuperOPF: adding unit commitment 
(MIP) and general linear system dynamics driven by the 
injections. Motivation: to model time-dependent 
pollutant transport.  Additionally, further refinements 
to the storage resource modeling have been added and 
are being tested. 
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Motivation 

• The 2nd generation Multi-Period SuperOPF is 
based on the day-ahead paradigm, planning a 
stretch of 24 hours at a time. In actual 
operation, it is assumed that a second-stage 
solver redispatches close to real-time, 
adjusting the 24 hour plan. 

• But that far into the future the error bounds 
for wind forecasts are very large, and the 
system state could be different in general 
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Expected Output with Error Bounds 
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Incorporating new information 

• In real life, there is new information arriving 
every instant in the form of improved forecasts 
and actual measurements of the system’s state 

• Ideally, this new information should be 
incorporated as soon as it arrives.  The current 
decisions must be made with the best 
information available. 

• Similarly, some decisions should be made at a 
later time whenever possible, when there is more 
confidence in forecasts. 
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Receding horizon 

• Keep most characteristics of the unique approach used at 
Cornell:  
– whole-day planning horizon, 
– stochastic cost, 
– cooptimization of energy and both ramping and contingency 

reserves 
– post-contingency security 
– operating envelope modeling rather than trajectory scenarios, 

for tracktability and ensured security 
– transition probabilities to gauge the ramping needs (security of 

operation is still key!) 
– freedom to use storage for either arbitraging, mitigating 

uncertainty and contingency recovery 

• But now, re-solve every hour with new information 
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• Some quantities for next few hours could already be “firm”, 
fixed by decisions that were required to be made earlier, 
and their redispatch would be like an almost real-time 
adjustment 

• Further ahead in the horizon, other quantities will still need 
to be determined (amount of contingency and ramp 
reserves, contracted energy quantities, commitment status) 

• Offers need to be firm for the planning horizon (needed for 
co-optimization) 

• Can have different lock-in lead times for each resource; if a 
decision can be deferred without consequences, it may be 
more advantageous to delay making it. 

• Can publish non-binding quantities and prices even before 
lock-in (units with non-firm fuel contracts will appreciate 
this) 
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Related to: Model predictive control 
(MPC) 

• Mature technique already used in industry 

• Instead of a feedback law computed by a 
dynamic system, as in many traditional control 
schemes, the decisions in MPC are the result 
of an intertemporal optimization 

• Made possible by advances in QP solving in 
the 80’s and 90’s 
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Principles: 

• Re-computation of controls using new 
measurements and a receding horizon 
replaces classical feedback 

• Always use the latest measurements, 
forecasts, or information 
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Structure of 3rd generation SuperOPF 

• Keep two stage structure 
• Ideally, look at horizons that are at least as long 

as the load variation cycle to properly handle 
storage 

• The first stage does the look-ahead; the second 
dispatches securely within the limits imposed by 
stage 1, like the 1st and 2nd generation SuperOPFs. 

• For simulation purposes, can stop at the level of 
detail provided by stage 2. 

• In practice,  a third pricing-only real-time OPF 
would be run. 
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Timeline for receding horizon 
• At time t, the horizon {t+1, t+2 … t+N}, where t+N 

is the furthest point in time for which we have 
offer information, is considered as an 
optimization problem, and decisions {u(t+1), … 
u(t+N)} are computed. 

• Only decision u(t+1) is actually implemented, 
meaning that starting now (t) the system will be 
driven so that it will be at the desired state in t+1.   

• Decision u(t+2) will be recomputed, with new 
information (updated forecasts and current 
system state) at time t+1, using the new horizon 
{t+2, t+3, … t+N}. 
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• If in any given instant new offers become 
available, N is updated accordingly. 

• There might be a need to consider an additional 
“computational delay” if the time required to 
solve the stage 1 problem is comparable to that 
represented in each period or “hour”. 

• Within each “hour”, the second-stage solver is 
run several times, trying to steer the system in a 
trajectory interpolated from the current state to 
the state that we want to be right on the hour, as 
computed in the latest optimization.  This solver 
enforces contracted limits. 
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Temporal structure 

• Three basic time parameters needed to define 
the temporal structure 

• τb is the periodicity of offer reception (e.g., every 
24 hours; the length of the “business” cycle) 

• τs is the hour, within the “day”, at which the 
business cycle begins 

• τa is the lead time for offers (how many hours 
ahead of the start of the business cycle the offers 
become available) 
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Offers for next day available at noon: τb = 
24, τs = 0, τa = 12 
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Offers for day starting at 03:00 available at 
noon previous day:  

τb = 24, τs = 3, τa = 15. 
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Offers just for t+24 available hourly:  τb = 1, 
τs=0, τa = 24 

 

30 



Using it / testing it 

• Generating evolving forecasts becomes 
necessary!  Huge effort to characterize wind 
realizations conditional on an evolving, 
dynamic forecast.  But that is how it would be 
used in practice.   

• The proposed approach needs a dynamic 
simulation in order to be tested appropriately. 
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Representing Uncertainty in a 
Receding Horizon Formulation 

C. Lindsay Anderson 

Amandeep Gupta 
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Representing Wind Uncertainty 

• Ability to forecast wind generation improves 
as the forecast horizon becomes shorter 

• evolving information is fundamental 
advantage of receding horizon framework 

• dynamic evolution of uncertainty must be 
properly represented in model inputs, to 
justify the approach 
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Characteristics of Wind Forecasts 

Planning scenarios should conditioned on a priori 
day ahead forecast  

These wind (and load) forecasts must: 

•represent a time series of distributions 

•exist throughout the entire horizon 

•have accuracy inversely correlated with forecast 
horizon 

•preserve serial correlation over the forecast 
horizon 
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SuperOPF Wind Inputs 

1. Classification of “days” based on the current 
operating point and forecast type 

2. Scenarios to represent possible evolutions 
resulting from similar forecasts  

3. Analysis of SuperOPF performance through 
actual realizations in operational simulations 

To meet these needs, we develop the SuperOPF 
inputs according to the following algorithm 
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Wind Input Development Map 

Development of 
Forecasts 

•Develop complete simulated 
forecasts,  

•Interpolation of inter-window 
forecasts 

Filtering 
Historical Data 

•Classify realizations based on 
similar  

•Initial condition 

•Forecast over horizon 

 

Scenarios 
resulting from 

common forecast 

•Conditional on similar forecast 

•Develop hourly output scenarios 
with empirical transitions 

Assessment of 
operational plan 

•SuperOPF  performance: 

•Planned using conditional 
scenarios 

•Run on realized days 
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1. Development of Forecasts 

• Important to take day-ahead forecasts into 
account when developing realistic scenarios 

• Using NREL-EWITS data, we develop daily 
forecast trajectories from 1 to 24 hours ahead 

– Interpolation of simulated forecasts to complete 
horizon as first attempt 

– Assessment of error evolution to test the realism 
of resulting synthetic forecast data 
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Normalized RMSE Comparison 
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Interpolated Forecasts

NREL Forecasts
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Expected Output with Error Bounds 
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2. Filtering Historical Data 

Purpose: To identify similar days in historical 
data 

• Filtering data to identify similar  

– current state, and  

– forecast horizons 

• Trajectories are clustered in 2 steps: 

1. On similar current state across all wind farms 

2. On forecasted wind output and load 
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Classifications of Forecast Type 
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Classifying Forecast Types 

 

 

Forecasted Wind Output and Error Bounds 

43 



Expected Forecast and Observed Output 

44 



3. Identifying Scenarios from common 
forecast 

• From set of similar forecasts 

• Represent all possible outcomes with finite set 
of scenarios 

• This was the basis of much of scenario work in 
2011/12 
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High Probability Scenarios 
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Scenarios evolve through the horizon 

• As the SuperOPF co-optimization is applied 
through the receding horizon, wind states 
must evolve to represent 

– possible states at each hour 

– reasonable transitions among states 

• Represented by hourly states with markov 
transition probabilities forward through the 
horizon 
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Benchmarking with Realizations 

• With the realistic SuperOPF inputs, can 
benchmark the performance of the optimal 
day-ahead plan 

– day-ahead plan determined with the scenarios 
conditioned on the forecast 

– re-run throughout a complete day with sampled 
realizations that are revealed hourly 

– ability of the planned dispatches to meet the 
needs of the realized days evaluated 

48 



Application to Receding Horizon 

• The data analytics are even more important in 
the receding horizon formulation 

• Methods developed here are applicable, but 
entire filtering approach applied hourly for the 
next 24 hours 

• Very data intensive, but reproduce operational 
procedure for system operators 
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One More Thing 

Daniel Muñoz-Álvarez exploring concept of 
flexibility rights, demand side of reserves. 

– idea is to create a market where resources causing 
uncertainty are the ones who pay for it 

– everyone contracts for certain quantity of power 

– some resources deviate without notice (demand 
side, need to procure flexibility rights) 

– some resources deviate on command (supply side, 
provide reserves) 

– similar idea could be applied to variability 
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Thank You! 
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