

Proudly Operated by Battelle Since 1965

Spectral Analysis of Power Grid PMU Data

Presented by: Ning Zhou

Ning Zhou, Jian Yin, Bora Akyol

Pacific Northwest National Laboratory June 12th, 2012

Washington DC

Project Overview

Proudly Operated by Battelle Since 1965

Time line Feb 2012 – May 2012

PNNL Team:

- Ning Zhou
- Jian Yin
- Bora Akyol
- Advisors:
 - Dmitry Kosterev (BPA)
 - Dan Trudnowski (MT)
 - Jeff Dagle (PNNL)
 - Zhenyu Huang (PNNL)
 - John Pierre (UW)

Problem formulation:

Some dynamic events (e.g. mistuned PSS, tie-line tripping, malfunction of generator controllers) may push the system into alert and emergency states, if proper control actions cannot be taken in time.

Objective:

Enable operators to detect and react to dynamic events by extracting and analyzing spectral features from PMU measurements.

Challenges & Approaches

Challenges:

The time domain PMU data often do NOT reveal dynamic features in a straightforward manner

Approaches:

Transform the data into features

Spectral Analysis

Spectrum is chosen because it can reveal how total power is distributed over frequency.

2

Relevance: Early Warnings based on PMU data

Technical Approaches: **Spectral Baseline**

Goal: Build a threshold curve for spectra to detect unusual oscillations

Typical and Non-typical PMU Data

Typical data:

- Ambient Data: random changes with small amplitudes caused by small amplitude random load changes
- Transient Data: strong oscillations that last for short periods, (e.g. ringdown caused by major disturbance such as tripping lines and brake insertion)
- Sustained Oscillation: oscillations that last for extended periods. (e.g. probing, forced oscillations)

Non-typical data:

- Missing Data: dropped out data points, which may result from temporary communication and measurement device failure
- Outliers: significantly deviated from normal values which may be generated by temporary sensor failure or high level interference)

Technical Approaches:

The Spectrum during Transient Events

Proudly Operated by Battelle Since 1965

- Most of data are ambient data
- Transient data carry significantly larger amount of energy in lower frequency range

Use Median for Determining Thresholds

'Median' is more robust in measuring variability than 'mean'
Most of energy of the PSD are concentrated below 2.0 Hz

Histograms with Smooth Long Tails

Proudly Operated by Battelle Since 1965

Gaussian distribution: 6*std => 99.9999998027%

Detect Transient Events

Proudly Operated by Battelle Since 1965

Gen Loss

Time (minutes)

- RD&D stage: Modeling/Simulation (using real world data).
- Attended MT and UW training to improve understanding of SEM
- Met with Dr. Dmitry Kosterev (BPA) to clarify the needs
- Attended the WECC JSIS to get inputs from industrial experts
- A framework has been established to
 - 1. Extract PMU data from saved data file;
 - 2. Perform spectral analysis;
 - 3. Generate threshold curves;
 - 4. Detect dynamic events according to the threshold curves.

- Enhance the preprocessing function for outlier detection.
- Separate the different types of data so that spectral analysis parameters can be adjusted accordingly (For example, long windows for ambient; short window for transient).
- Add some additional factors (time of the day, work day/weekend, coherency, transfer functions) to help classify oscillations.
- Perform a cross-validation test to evaluate the performance.
- Explore methods for managing data.

Early thoughts on FY 13 studies

Proudly Operated by Battelle Since 1965

- Build a database for major transient events
- Evaluate and enhance feature extraction
- Develop a machine-learning based classification method
- Initial study on actionable rules
- Improve the efficiency of using spectral analysis

- Working with industrial experts in BPA to align the studies to the needs
- Working with professors in MT and UW to get input and advise in using SEM
- Use field measurement PMU data from BPA for evaluation and testing

Questions?

Proudly Operated by Battelle Since 1965

Technical Approaches: Spectral Baseline

Goal: Build a threshold curve for spectra to detect unusual oscillations

Approaches:

- Identify and obtain one month of real world PMU data in *.dst format;
- Identify major events in the data;
- Select some sample channels which are known to be able to capture oscillations in the past;
- Parse the PMU data into MATLAB format;
- Convert the time domain data into spectrum (using SEM from MT and UW);
- Build **a threshold curve** for the spectrum;
- Design a method of detecting unusual oscillations using the threshold curve;
- Verify whether the unusual oscillatory spectrum can be well separated from usual spectra.

Negative Impact of Outliers on a Spectrum

