

Journey to Excellence Goal 1 and 2 Tank Waste and Lifecycle Costs

Shirley J. Olinger

Associate Principal Deputy for Corporate Operations Office of Environmental Management U.S. Department of Energy

Agenda

- Journey to Excellence Goal 1: Status Three Major Tank Waste Projects
- Journey to Excellence Goal 2: Enhanced Tank Waste Strategy
- Key 2011 Activities
- Support from EMAB

Expanding the 2020 vision into measurable outcomes

Roadmap

EM Journey to Excellence

Complete the three major tank waste projects

2020
Reduce Life-cycle costs and accelerate cleanup

Complete disposition of 90% of legacy TRU by 2015

2015
Reduce EM legacy footprint by 40% by the end of 2011 and 90% by 2015

What We Do Program Goals

Goal 1
Complete the three major tank waste projects

Complete the three major tank waste projects within the approved baselines

- Use best scientific resources
- Provide necessary tools
- Establish an integrated design/engineering testing and commissioning framework
- Use Construction Project Reviews (CPRs)
- Align contract fee with completion of each capital asset
- Develop a Code of Record, only accept significant changes

Key Strategies

- <10% variance for project cost and schedule performance indices</p>
- 90% of CPRs are performed as scheduled with successively fewer recommendations
- > 90% of associated Corrective Actions finished within six months
- Interim success parameters

Key Success Indicators

Journey to Excellence – Goal 1

Status of 3 Major
Construction Projects

- Sodium Bearing Waste Facility
 - Construction 92% complete, commissioning systems
 - 2011 completion tracking with performance baseline
 - Salt Waste Processing Facility
 - Construction 53% complete, fabricating large ASME vessels
 - 2013 completion projected as planned
- Waste Treatment Plant
 - Construction 57% complete, large scale integrated mixing testing for the pulse jet mixing

Project Status

- Sodium Bearing Waste Facility
 - Project completion (CD-4) in December 2011
 - Complete Hot Nitrogen Testing, Conduct Operational Readiness Reviews, and begin Hot Operations
 - Salt Waste Processing Facility
 - Reassess critical path (schedule) due to ASME vessel slippage
 - Complete major vessel procurements and installation
 - Complete structural construction to the 139-foot elevation
- Waste Treatment Plant
 - Identify cost reduction and early completion opportunities

Key Activities in 2011

Idaho National Laboratory

Complete the three major tank waste construction projects
Calcine

4,400 m³

36.5 Million Curies

Estimated Completion: 2035

Sodium Bearing Waste Treatment Facility Idaho

Gallons
37 Million

Savannah River

379 Million
Curies

4 Tanks Cleaned

Estimated Completion: 2032

Salt Waste Processing Facility Savannah River

Waste Treatment Plant Hanford

→257,000 cubic yards concrete →34,600 tons structural steel →980,000 feet piping →2,055 tons ductwork →946,000 feet electrical raceway →4.2 million feet electrical cable

What We Do Program Goals

Reduce the life-cycle costs and accelerate the cleanup of the Cold War legacy

Goal 2
Reduce Life-cycle costs
and accelerate cleanup

Reduce the lifecycle costs by investing in transformational technologies

- •\$7B lifecycle cost savings and avoidance via ARRA
- \$19B tank waste savings by accelerating tank waste schedule 6 years at SRS and 7 years at Hanford; thereby reducing EM's environmental liability and lifecycle cost by \$3B at SRS and \$16B at Hanford
- **\$10B** groundwater remediation

Journey to Excellence - Goal 2 Enhanced Tank Waste Key Strategies and Technology Needs

- At-Tank/In-Tank treatment solutions for supplemental treatment capacity - Small Column Ion Exchange (SCIX) and Rotary Microfilter (RMF)
- Fluidized Bed Steam Reformer (FBSR) vs upgrading Effluent
 Treatment Facility
- FBSR as supplemental treatment vs 2nd LAW Facility
- HLW improved vitrification capacity (1.5 2 X) starting in 2025 Next generation melters and enhanced glass formulations
- Advanced Joule-heated melters
- Cold Crucible Induction Melter (CCIM)
- Iron Phosphate glass
- Single Shell Tank (SST) Consolidation SST Integrity nondestructive examination
- Hard Heel Retrieval Technology Chemical cleaning techniques
- Redundant and flexible evaporation capability Wipe Film Evaporator (WFE)
- Contact handled waste (11 tanks) dried, packaged, stored onsite pending offsite disposition

Key Strategies and Technology Needs

Journey to Excellence - Goal 2 Enhanced Tank Waste Strategy Progress

Five samples part of the Bench Scale Steam Reforming (BSR) testing; three samples of actual Hanford tank waste

BSR product – granular and monolith forms – undergoing waste form durability analysis at SRNL and PNNL – expect results by Spring 2011

Continued development of in-tank Rotary Micro-Filter and Small Column Cs Ion Exchange technologies for SRS and Hanford applications

Continued development of Wiped Film Evaporators – modular design to augment the 242-A Evaporator and better stage waste for treatment

Planned testing in 2011 of engineering-scale melter with offgas recycle loop to better understand Tc-99 retention in LAW glass

Next generation melters development and enhanced glass formulations

Key Activities in 2011

EMAB Support

- Task 1 Review Modeling for Life-Cycle Analysis
- Task 2 Assess Candidate LAW Forms
- Task 3 Assess At-Tank/In-Tank Technologies
- Task 4 Evaluate Various Melter Technologies
- Task 5 Evaluate Reliability of Waste Delivery Plans
- Task 6 Identify Other Tank Waste Vulnerabilities

EMAB Tasks

Summary

- All Three Construction Projects on schedule and within cost
- Sodium Bearing Waste Facility operations by 2011
- Tank Waste Mission drives the EM LCC
- ETWS, if successful, offers significant opportunity to reduce EM's LCC
- Significant activities in 2011
- Engage Regulators, Tribes, and Stakeholders
- HLW Corporate Board, EM-TEG, and EMAB to assist EM Leadership in this Journey to Excellence