

Regional Variation in Residential Heat Pump Water Heater Performance in the US

Jeff Maguire

4/30/13

Outline

- Why HPWHs?
- US Water Heating Market
- Overview of HPWHs
- Model Description
- Results
 - HPWH Performance
 - Energy Savings Potential
 - Breakeven Cost

Heat Pump Water Heaters

Save \$300 a year over standard electric? Save \$100 a year over standard gas?

Heat Pump

Water Heater - Heat Pump General Electric First Hour Rating 65 gallons Models: GEH50DEEDSR Energy Factor 2.4 GEH50DEEDSC Capacity: 50 Gallons **Estimated Yearly Operating Cost** \$195 * Cost range of Similar Models 1830 kWh **Estimated Yearly Electricity Use** Your cost will depend on your utility rates and use. • The estimated Annual Energy Consumption of this model was not available at the time the range was published. Estimated operating cost based on a 2007 national average electricity cost of 10.65 cents per kWh. · For more information, visit www.ftc.gov/appliances 215C1276P001A

Electric

Gas

Questions about HPWHs

- Are HPWHs a good replacement for typical gas and electric storage water heaters?
 - In different locations across the country?
 - o In conditioned/unconditioned space?
 - Source energy savings?
 - o Cost effective?

Current U.S. Water Heating Market

Heat Pump Water Heater

HPWH Models

- Based on NREL lab testing
 - 2 manufacturer's HPWH(50 & 80 gallons)
 - Manufacturer specific models (control logic, heat pump performance, ect.)

Annual Simulations: Building Model

- 2500 ft² 2 story home with attached garage
- BA Benchmark-ish home
- Foundation consistent with regional building practices
 - "Unconditioned Space" defined as the basement if a home had one, garage otherwise
- 3 sets of space conditioning equipment:
 - o ASHP
 - Furnace/AC
 - Electric Resistance Heat/AC

HPWH Annual Simulations: Foundations

Figure 1-3: Estimated Share of Basement, Crawl Space, and Slab Foundations by State (1979-1983)

*Source: "Building Foundation Design Handbook", K. Labs et al, ORNL, 1988

HPWH Annual Simulations: Hot Water Usage

- "Average" hot water use
 - 45-60 gal/day, from DHWESG
 - Includes hot and tempered draws
- 120 °F set point for all WHs
- 105 °F mixed draw temperature
- Normalization energy used to account for outlet temperature sag below a useful temperature
 - For all water heaters

Water Heating Load

HPWH Annual Simulations: Metrics

System COP:

$$COP_{sys} = \frac{E_{del}}{E_{cons}}$$

 System COP is an efficiency metric that can be directly compared to the rated performance (EF)

Source Energy Savings:

$$E_{saved} = \Delta E_{WH} + \Delta E_{nrmlz} + \Delta E_{heat} + \Delta E_{cool}$$

 Source energy savings provides a fairer comparison for fuel switching scenarios

HPWH Results: System COP (efficiency)

Source Energy Savings

HPWH Economic Analysis

- Economic analysis was done using breakeven cost.
- Breakeven is HPWH net installed cost where:

$$NPB = NPC$$

- NPC includes cost premium of upgrading to a HPWH from another gas or electric WH, maintenance costs
- NPB includes utility bill savings (& incentives)

Current HPWH Net Installed Cost*	
50 gallon HPWH	\$1250-\$2000
80 gallon HPWH	\$2000-\$2750

^{*}Actual costs (especially installation costs) may vary significantly, does not include incentives

Utility Rates

Breakeven Cost

Breakeven Cost

Conclusions

- In many cases, HPWH are not likely to achieve rated performance (especially 50 gallon)
- HPWHs save some energy over electric WHs, but rarely over gas WHs
 - Highest savings in regions with low number of gas WHs
- HPWHs may be cost effective in several regions when replacing ELECTRIC WHs
 - o California
 - o Hawaii
 - New England
 - Southeast

Conclusions

- Factors that influence HPWH savings NOT considered here:
 - Draw volume and usage pattern
 - Variation between manufacturers in HPWHs
 - Variations between homes
 - Other installation locations (attic, crawlspace ect.)

More information coming soon!

 For details and additional maps, look for the upcoming technical report:

> "Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States"

By: Jeff Maguire, Jay Burch, Tim Merrigan, and Sean Ong

Questions?

Breakeven Cost

Breakeven Cost

