

Perspectives on Transmission Congestion

Bob Bradish

Managing Director, Transmission Planning & Business Development
American Electric Power

U.S. Department of Energy
National Electric Transmission Congestion Study Workshop
December 6, 2011

American Electric Power

- 5.2 million customers in 11 states
- ~18,000 employees
- Largest distributor of electricity in the U.S.
 - 215,800 miles
- Largest transmission owner
 - 39,000 miles
- 2nd largest generator
 - 39,000 MW
- Operations in 3 RTOs
 - PJM, SPP, & ERCOT

Value of 2009 Study

- The study conclusions were appropriate
 - Identified historical congestion
 - Overly broad, missed some areas
 - Type I and Type II areas are generally accurate but could be improved – especially Type I
 - Limited ability to address emerging issues

Changing "State of Congestion"

- Relatively consistent
 - Dip in 2009 but recovering
 - 2011 through September
- Volatility in the components
 - Load, Gen, DA, RT
- Congestion growing along the PJM/MISO seam
 - Wind belt
 - Capacity disconnect

AEP Zone Congestion

* Congestion through September 2011

Capacity Disconnect

- Transmission systems have historically been planned on a capacity basis
 - Ability to deliver power to meet the peak demand under a variety of conditions
- Capacity of a wind farm is a moving target
 - Peak output occurs during shoulder months and off-peak hours
 - Planning authority dependent
 - Wind resource dependent

Monthly Capacity Factor

Capacity Disconnect

Capacity disconnect laying the foundation for significant future congestion!?

Today's Congestion

- Differences in LMP across the footprint
- Coordinated flowgate transfer payments
 - Payments made between PJM and MISO for congestion created on each others systems
- Transmission Loading Relief
- Manual curtailment of intermittent resources
 - Operational inefficiency of manually curtailing large amounts of wind
 - Dispatch decisions and LMP do not incorporate wind economics
- Increase in transmission switching actions
 - Utilizing protection equipment for routine operations
- Generation interconnection queue
 - Large potential source of generation lacking adequate transmission capacity
- Capacity market congestion
 - Zonal price differences in the capacity market clearing prices

MISO Manual Curtailments

Benefits of Mitigating Congestion

- Benefits of the RITELine Project
 - Significant customer savings
 - Improves reliability
 - Allows for integration of 5,000 MW of wind generation

	PJM 2021 (\$m/yr)	MISO 2021 (\$m/yr)	System 2021 (\$m/yr)
Total Production Cost Savings			\$630
Adjusted Production Cost [APC] Savings	\$729	-\$23	\$691
Load [LLMP] Savings	\$666	\$74	\$1,025
70% APC + 30% LLMP Savings	\$710	\$6	\$791

These benefits will be lost if wind generation development is constrained.

Source Material for 2012

- RTO data and studies
 - Historical, granular, State of the Market
 - Inter-regional congestion not addressed in a robust manner
 - Need to include congestion costs built into capacity prices
- EIPC
 - Interesting insight into future congestion issues
 - Higher level view
- SMARTransmission Study
 - High level focus on the mid-west wind corridor
 - Type of analysis that the DOE should consider
- Other considerations
 - Anything changing faster than "The Speed of Transmission"
 - Fuel prices and switching, environmental regulations, generation retirements, RPS requirements, wind development, RTO membership, etc.

