

The Global Nuclear Energy Partnership: Systems Analysis and Integration

Phillip J. Finck Associate Laboratory Director Idaho National Laboratory

NERAC

- The Role and Challenges of Systems Analysis
- System Architectures and their Benefits
- Technical Options and Alternates
- Economics Analyses
- **2008 Focus**
- Path Forward on Technical Integration
- Conclusions

Supporting the GNEP Strategy Requires Facilities and Capabilities that Largely Do Not Exist at Present

Challenges of Systems Analyses

■ GNEP objectives are technically complex

Need a requirement driven process to structure the approach

Technologies are highly interdependent

Need to choose a workable system

Materials pathways need to be managed

Many forms are envisioned; management will need to last for centuries

Economics and deployment strategies are key issues

- Need integrated analysis approaches
- Understand and manage benefits and costs

Technology risk needs to be managed

Need to develop a prioritized technical approach

2. Spent Nuclear Fuel Management Options

February 22, 2007

3. Systems Analyses Accomplishments: Selection of Reference Technical Options

Systems Analyses Investigations have demonstrated that:

- Achieving repository benefits (capacity, dose) requires the management of uranium, transuranics, and certain short- and long-lived fission products. The UREX+1a process provides a <u>proof of existence</u> of such schemes.
- Losses of transuranics must be controlled during separations and fuels fabrication stages to achieve these benefits
- Significant transmutation of transuranics is not practical in current commercial reactors; fast reactors provide a more efficient solution
- Transuranic elements should be kept together as much as practical to reduce proliferation risk
- Systems analysis must address the entire fuel cycle
- Transition to a closed fuel cycle will take several decades to complete
- To reduce proliferation risk in the international fuel cycle, it is critical to discourage the spread of enrichment and separation capabilities, and to eliminate excess stocks of separated plutonium

Issues needing further attention:

- Evaluation of alternative options
- Domestic and international deployment scenarios
- Economics
- GNEP waste management strategy

February 22, 2007 NERAC

Evaluation of Alternate Options

Current choice of reference technologies provides a proof of existence.

- Performance might not be optimized
- Economics might not be optimized
- Implementation will need to progress incrementally

Key alternates that need to be evaluated

- Separation schemes that provide a transition from existing technologies to complete waste management
- Transmutation schemes that are adapted to that transition
- GNEP waste management strategy that incorporates both technical and regulatory requirements

The Economics task is developing an on-going, credible, technical cost analysis basis

- We are evaluating the impacts and benefits of a wide range of nuclear energy deployment options to:
 - understand the issues and opportunities related to keeping nuclear power an economically competitive option (via greater participation with Industry),
 - evaluate the elements that dominate nuclear fuel cycle costs (via modeling and sensitivity analysis),
 - and help to develop creative solutions that can make future nuclear reactors and their fuel cycles internationally viable (via international participation).
- Our costing database continues to be reviewed by independent industry experts

The goal is to provide a balanced analysis with consistent cost data, credible design basis, and peer-reviewed methods and accounting practices

February 22, 2007 NERAC 8

Comparison of SNF Storage and Disposal for Once-Through and Recycling scenario

Once developed, scenario analyses such as this one provide important information

- Provides insights on the interactions between constraints and variables
- Provides important information for program decisions and enables system enhancements
 - Coordination and timing of facilities
 - Requirements for separations efficiencies
 - Technology cost estimates for market penetration
 - Guide technology development needs
 - Repository/waste form acceptance criteria
 - Informs licensing/regulatory process
 - Enables evaluation of options and optimization and system
 - Transportation infrastructure needs
 - Industry infrastructure needs
 - Informs national/international laws and policies
 - Informs program risk
- Enables effective communication to stakeholders

NEA/OECD Working Party on Scientific Issues of the Fuel Cycle includes studies of User/Supplier scenarios

Near-term Focus is Input to the Secretarial Decision Package for June 2008

- Deployment options. Comparison with partner states
- Economic and business payoffs
 - Benefits, costs, and their redistribution
- Effect of uncertainties in technology development
- Input to business plan
- Role of nuclear (with GNEP) in global energy picture
- Integrated waste management strategy
- Provide input to NEPA and PEIS activities

Path Forward on Technical Integration

■ Organize the Program into Campaigns (4/1/2007):

- Focused product driven structure
- Integrate Technology Development, Engineering Research, Modeling and Simulation, and Scientific Research
- Drive the transformation of the research process
- Six Potential Campaigns:
 - Systems Analyses
 - Fuels
 - Separations
 - Fast Reactors Technologies
 - Safeguards
 - Waste Forms

Path Forward on Technical Integration (2)

Establish a Technical Integration Office (TIO) with two functions

- Technical coordination
 - Between campaigns
 - Between campaigns and projects
 - Between campaigns and foreign partners
 - TIO drives Systems Analyses
 - TIO owns cross cutting activities (Regulations; ...)
- Program coordination
 - Integrated schedules
 - Controls
 - QA
 - Information Management
 - Communication

- Under the GNEP initiative, the systems analysis effort is now focused on definition and assessment of a closed fuel cycle
- Dynamic scenario analyses are used to integrate program information and inform program decisions
 - Provides insights on the interactions between constraints and variables
 - Provides important information for program decisions and enables system enhancements
 - Enables effective communication to stakeholders
- The systems analysis effort will assist in informing both domestic and international policy

